Installation manual

Effective July 2017

Support services

The goal of Johnson Controls is to ensure your greatest possible satisfaction with the operation of our products. We are dedicated to providing fast, friendly, and accurate assistance. Whether it's by phone, fax, or email, you can access support information listed below.

You should contact your local Johnson Controls Sales Representative for product pricing, availability, ordering, expediting, and repairs.

Website

Use the Johnson Controls website to find product information.

Website address

www.johnsoncontrols.com -> HVAC Controls -> Variable Speed Drives

Johnson Controls product sales operation

Call the Johnson Controls PSO Team if you need assistance with placing an order, stock availability or proof of shipment, expediting an existing order, emergency shipments, product price information, and returns (including warranty returns).
Voice: 1-800-ASK-JNSN [275-5676] (US); 1-800-321-4023 (CA)
FAX: 1-800-356-1191 (US); 1-800-321-4024 (CA)
Support Hours of Operation: Monday-Friday, 6:30 a.m.-5:30 p.m. CST
(No evening or weekend Customer Service hours).
If you are in the U.S. or Canada, you can take advantage of our toll-free line for technical assistance. Technical support engineers are available for calls during regular business hours.

Johnson Controls Field Support Center1-888-281-3792 Monday-Friday, 7:30 a.m.-5:30 p.m. CSTemail: CGFieldSupportCenter@jci.com

For emergency assistance, contact: johnsoncontrols technical resource center
Voice: 877-ETN-CARE (386-2273) (8:00 a.m.-5:00 p.m. EST)
FAX: 828-651-0549
email: TRC@johnsoncontrols.com

4 Danger!
 Dangerous electrical voltage!

Before commencing the installation

- Disconnect the power supply of the device.
- Ensure that devices cannot be accidentally restarted.
- Verify isolation from the supply.
- Earth and short circuit the device.
- Cover or enclose any adjacent live components.
- Follow the engineering instructions (AWA/IL) for the device concerned.
- Only suitably qualified personnel in accordance with EN 50110-1/-2 (VDE 0105 Part 100) may work on this device/ system.
- Before installation and before touching the device ensure that you are free of electrostatic charge.
- The functional earth (FE, PES) must be connected to the protective earth (PE) or the potential equalisation. The system installer is responsible for implementing this connection.
- Connecting cables and signal lines should be installed so that inductive or capacitive interference does not impair the automation functions.
- Install automation devices and related operating elements in such a way that they are well protected against unintentional operation.
- Suitable safety hardware and software measures should be implemented for the I/O interface so that an open circuit on the signal side does not result in undefined states in the automation devices.
- Ensure a reliable electrical isolation of the extra-low voltage of the 24 V supply. Only use power supply units complying with IEC 60364-4-41 (VDE 0100 Part 410) or HD384.4.41 S2.
- Deviations of the mains voltage from the rated value must not exceed the tolerance limits given in the specifications, otherwise this may cause malfunction and dangerous operation.
- Emergency stop devices complying with IEC/EN 60204-1 must be effective in all operating modes of the automation devices. Unlatching the emergency-stop devices must not cause a restart.
- Devices that are designed for mounting in housings or control cabinets must only be operated and controlled
after they have been installed and with the housing closed. Desktop or portable units must only be operated and controlled in enclosed housings.
- Measures should be taken to ensure the proper restart of programs interrupted after a voltage dip or failure. This should not cause dangerous operating states even for a short time. If necessary, emergency-stop devices should be implemented.
- Wherever faults in the automation system may cause injury or material damage, external measures must be implemented to ensure a safe operating state in the event of a fault or malfunction (for example, by means of separate limit switches, mechanical interlocks etc.).
- Depending on their degree of protection, frequency inverters may contain live bright metal parts, moving or rotating components or hot surfaces during and immediately after operation.
- Removal of the required covers, improper installation or incorrect operation of motor or frequency inverter may cause the failure of the device and may lead to serious injury or damage.
- The applicable national accident prevention and safety regulations apply to all work carried on live frequency inverters
- The electrical installation must be carried out in accordance with the relevant regulations (e. g. with regard to cable cross sections, fuses, PE).
- Transport, installation, commissioning and maintenance work must be carried out only by qualified personnel (IEC 60364, HD 384 and national occupational safety regulations).
- Installations containing frequency inverters must be provided with additional monitoring and protective devices in accordance with the applicable safety regulations. Modifications to the frequency inverters using the operating software are permitted.
- All covers and doors must be kept closed during operation.
- To reduce the hazards for people or equipment, the user must include in the machine design measures that restrict the consequences of a malfunction or failure of the drive (increased motor speed or sudden standstill of motor).

These measures include:

- Other independent devices for monitoring safetyrelated variables (speed, travel, end positions etc.).
- Electrical or non-electrical system-wide measures (electrical or mechanical interlocks).
- Never touch live parts or cable connections of the frequency inverter after it has been disconnected from the power supply. Due to the charge in the capacitors, these parts may still be live after disconnection. Fit appropriate warning signs.

Table of contents

0 About this Manual 5
0.1 Target group 5
0.2 List of revisions 5
0.3 Writing conventions 6
0.3.1 Hazard warnings of material damages 6
0.3.2 Hazard warnings of personal injury 6
0.3.3 Tips 6
0.4 Documents with additional information 7
0.5 Abbreviations 7
0.6 Mains supply voltages 7
0.7 Unit of measurement 8
1 VSA Device Series 9
1.1 Introduction 9
1.2 System overview 11
1.3 Checking the Delivery 12
1.4 Rated operational data 13
1.4.1 Rating data on the nameplate 13
1.4.2 Catalog number selection 15
1.4.3 Features 17
1.5 Description 22
1.5.1 Degree of protection IP20 (FS2, FS3) 22
1.5.2 Degree of protection IP20 (FS8) 23
1.5.3 Degree of protection IP55 (FS4, FS5, FS6, FS7) 24
1.5.4 Degree of protection IP66 (FS2, FS3) 25
1.6 Voltage categories 26
1.7 Selection criteria. 29
1.8 Output reduction (derating) 31
1.9 Proper use 33
1.10 Maintenance and inspection 34
1.11 Storage 35
1.12 Charging the internal DC link capacitors 35
1.13 Service and warranty 35
2 Engineering 37
2.1 Introduction 37
2.2 Electrical power network 39
2.2.1 Mains connection and network configuration 39
2.2.2 Mains voltage and frequency 40
2.2.3 Voltage balance 40
2.2.4 Total Harmonic Distortion (THD) 41
2.2.5 Idle power compensation devices 41
2.3 Safety and switching 42
2.3.1 Disconnecting device 42
2.3.2 Fuses 42
2.3.3 Cable cross-sections 43
2.3.4 Residual current circuit-breaker 44
2.3.5 Mains contactors 45
2.3.6 Using a bypass connection 46
2.4 Mains chokes 47
2.5 Radio interference suppression filter 48
2.6 Braking resistances 49
2.7 Motor chokes 52
2.8 Sine filter. 53
2.9 Three-phase motor. 54
2.9.1 Motor selection 54
2.9.2 Circuit types with three-phase motors 55
2.9.3 Connecting Motors in Parallel 56
2.9.4 Single-phase AC motors 58
2.9.5 Connecting EX motors 58
2.9.6 Synchronous, reluctance, and PM motors 58
2.10 STO function 59
2.10.1 Overview. 59
2.10.2 TÜV certification 60
2.10.3 Safety relay specification 60
2.10.4 STO-compatible installation 61
2.10.5 STO function pick-up time 63
2.10.6 STO function parameters 64
2.10.7 Fault messages 67
2.10.8 STO function checklist 67
2.10.9 Regular maintenance 68
2.10.10 "Safe stop" function 68
3 Installation 71
3.1 Introduction 71
3.2 Mounting position 71
3.3 Mounting 72
3.3.1 Mounting position 73
3.3.2 Cooling measures 73
3.3.3 Fixing 77
3.3.4 Control panel installation 80
$3.4 \quad$ IP66/NEMA4X degree of protection 81
3.5 EMC installation 83
3.5.1 EMC compliance in the control panel 83
3.5.2 Earthing 85
3.5.3 Internal filters (EMC and VAR screws). 86
3.5.4 VAR screw 87
3.5.5 Screen earth kit 87
3.5.6 EMC cable brackets 88
3.5.7 General installation diagram 89
3.6 Electrical Installation 90
3.6.1 Power section connections 91
3.6.2 Connection on control section 104
3.7 Block diagrams 114
3.7.1 VSA 12 115
3.7.2 VSA 32...-A20C, VSA 34...-A20C 116
3.7.3 VSA 32...-B55C, VSA 34...-B55C, FS4 frame size 117
3.7.4 VSA 32...-B55C, VSA 34...-B55C, FS5, FS6, FS7 frame sizes 118
3.7.5 VSA 34370..., VSA 34450 119
3.7.6 VSA 35...-A20C 120
3.7.7 VSA 35...-B55C in FS4 121
3.7.8 VSA 35...-B55C in FS5, FS6 122
3.7.9 VSA 12...-B6SC 123
3.7.10 VSA 32...-B6SC, VSA 34...-B6SC 124
3.7.11 VSA 35...-B6SC 125
3.8 Insulation testing 126
3.9 Protection against electric shock 127
4 Operation 129
4.1 Checklist for commissioning 129
4.2 Hazard warnings for operation 130
4.3 Commissioning with control signal terminals (default settings) 131
4.4 Handling the keypad 134
4.4.1 Operating unit elements 134
4.4.2 Adjust parameters 136
4.4.3 Resetting Parameters (RESET) 136
5 Fault messages 137
5.1 Introduction 137
5.1.1 Fault messages 137
5.1.2 Acknowledge fault (Reset) 137
5.1.3 Fault list 138
6 Technical Data 143
6.1 General rating data 143
6.2 Specific rated operational data 147
6.2.1 VSA 12... series 147
6.2.2 VSA 32... series 148
6.2.3 VSA 34... series 151
6.2.4 VSA 35... series 154
6.3 Dimensions 157
6.3.1 Frame sizes FS2 and FS3 in IP20 157
6.3.2 Frame sizes FS4 to FS7 in IP55 158
6.3.3 Frame size FS8 in IP20 159
6.3.4 Frame sizes FS2 and FS3 in IP66 160
6.4 Cable cross-sections 161
6.5 Fuses 164
6.6 Mains contactors 168
6.7 Mains chokes 172
6.8 Radio interference suppression filter 176
6.9 Braking resistances 182
6.10 Motor chokes 188
6.11 Sine filter. 190
6.12 All-pole sine filters. 192
7 Accessories 195
7.1 List of accessories 195
Alphabetical index 197

O About this Manual

This manual (LIT-XXXXXXXX) is used in the installation and programming of the Series III VSA variable speed drives.

0.1 Target group

This LIT-XXXXXXXX manual is intended for engineers and electricians. Electrical engineering and physics-related knowledge and skills will be required in order to be able to commission the corresponding devices.

We assume that you have a good knowledge of engineering basics and that you are familiar with handling electrical systems and machines, as well as with reading technical drawings.

0.2 List of revisions

The following significant amendments have been introduced since previous issues:

Publication date	Page	Keyword	New	Modified	Deleted
11/16	66	P1-12 = 12			\checkmark
01/16	-	Manual split into this installation manual (= MN04020005Z-EN) and a parameter configuration manual (= MN04020006Z-EN) as well as revised in general		\checkmark	
	various	Performance expansion up to 250 kW (400 V)	\checkmark		
	various	Rated operating voltages up to 600 V	\checkmark		
	59	STO function (Safe Torque Off)	\checkmark		
10/12		Initial Issue			

0.3 Writing conventions

Symbols with the following meaning are used in this manual:

- Indicates instructions to be followed.

0.3.1 Hazard warnings of material damages

NOTICE
Warns about the possibility of material damage.

0.3.2 Hazard warnings of personal injury

WARNING

Warns of the possibility of hazardous situations that could result in serious injury or even death.

DANGER

Warns of hazardous situations that result in serious injury or death.

0.3.3 Tips

$$
\longrightarrow \quad \text { Indicates useful tips. }
$$

$\longrightarrow \begin{aligned} & \text { In order to make it easier to understand some of the images } \\ & \text { included in this manual, the variable frequency drive housing, as }\end{aligned}$ well as other safety-relevant parts, has been left out. However, it is important to note that the variable frequency drive must always be operated with its housing in its proper place, as well as with all required safety-relevant parts.
\longrightarrow
All the specifications in this manual refer to the hardware and software versions documented in it.

0.4 Documents with additional information

> More information on the devices described here can be found on the Internet under:

www.johnsoncontrols.com

0.5 Abbreviations

The following abbreviations are used in this manual.

DS	Default settings
EMC	Electromagnetic compatibility
FE	Functional earth
FS	Frame Size
FWD	Forward run (clockwise rotating field)
GND	Ground (0-V-potential)
IGBT	Insulated gate bipolar transistor
LED	Light Emitting Diode (LED)
OLED	Organic Light Emitting Diode
PC	Personal Computer
PDS	Power Drive System (magnet system)
PE	Protective earth ${ }_{\text {() }}$
PES	EMC connection to PE for screened lines
PNU	Parameter number
REV	Reverse run (anticlockwise rotation field active)
SCCR	Short Circuit Current Rating
UL	Underwriters Laboratories

0.6 Mains supply voltages

The rated operating voltages stated in the following table are based on the nominal values for networks with a grounded star point.
In ring networks (as found in Europe) the rated operating voltage at the transfer point of the power supply companies is the same as the value in the consumer networks (e.g. $230 \mathrm{~V}, 400 \mathrm{~V}$).

In star networks (as found in North America), the rated operating voltage at the transfer point of the utility companies is higher than in the consumer network.
Example: $240 \mathrm{~V} \rightarrow 230 \mathrm{~V}, 480 \mathrm{~V} \rightarrow 460 \mathrm{~V}, 600 \mathrm{~V} \rightarrow 575 \mathrm{~V}$.
The VSA variable frequency drive's wide tolerance range takes into account a permissible voltage drop of 10% (i.e. ULN - 10\%) while, in the 400-V category, it takes into account the North American mains voltage of $480 \mathrm{~V}+10 \%(60 \mathrm{~Hz})$.

The permissible power supplies for the VSA series are listed in the technical data section in the appendix.

The rated mains voltage operational data is always based on mains frequencies of $50 / 60 \mathrm{~Hz}$ within a range of 48 to 62 Hz .

0.7 Unit of measurement

Every physical dimension included in this manual uses international metric system units, otherwise known as SI (Système International d'Unités) units. For the purpose of the equipment's UL certification, some of these dimensions are accompanied by their equivalents in imperial units.

Table 1: Unit conversion examples

Designation	US-American designation	US-American value	SI value	Conversion value
Length	inch	1 in (')	25.4 mm	0.0394
Power	horsepower	$1 \mathrm{HP}=1.014 \mathrm{PS}$	0.7457 kW	1.341
Torque	pound-force inches	1 lbf in	0.113 Nm	8.851
Temperature	Fahrenheit	$1{ }^{\circ} \mathrm{F}\left(\mathrm{T}_{\mathrm{F}}\right)$	$-17.222{ }^{\circ} \mathrm{C}$ (T_{C})	$T_{F}=T_{C} \times 9 / 5+32$
Speed	Revolutions per minute	1 rpm	$1 \mathrm{~min}^{-1}$	1
Weight	pound	1 lb	0.4536 kg	2.205
Flow rate	cubic feed per minute	1 cfm	$1.698 \mathrm{~m}^{3} / \mathrm{min}$	0.5889

1 VSA device series

1.1 Introduction

Due to their comprehensive functionality and high reliability, PowerXL ${ }^{\text {TM }}$ VSA variable frequency drives are ideal for sophisticated applications involving synchronous or asynchronous three-phase motors.
In fact, VSA variable frequency drives are characterized by innovative technology and unrivalled reliability that meet the needs of the machine and system-building industry and enable companies to optimize their production and manufacturing processes.
All VSA variable frequency drives feature an internal brake chopper. In addition, devices belonging to the 230 V (VSA 32...) and 400 V (VSA 34...) voltage classes come with an integrated radio interference suppression filter (EMC).
Moreover, the devices' printed circuit boards are coated in order to provide greater protection against environmental factors.
VSA devices are characterized by compact and rugged construction, are available in seven frame sizes (FS2 to FS8), and are designed for the following motor output ratings:

- 0.75 (with 230 V) to 11 kW (with 400 V and 500 V) with an IP20 degree of protection and a 7 -segment digital display assembly
- $\quad 0.75 \mathrm{~kW}$ (with 230 V) to 7.5 kW (with 400 V and 500 V) with an IP66 degree of protection and an OLED display - also available in a version with a mains switch and controls for local control
- 5.5 kW (with 230 V) to 90 kW (with 500 V) and 132 kW (with 400 V) with an IP55 degree of protection, an OLED display, and an internal DC link choke in frame sizes FS5, FS6, and FS7
- 200 kW to 250 kW (with 400 V) with an IP20 degree of protection and an OLED display (frame size FS8)

Degree of protection IP20

VSA...-A20C

Degree of protection IP20 (200 kW, 250 kW)

VSA...-B20C

Degree of protection IP55

VSA...-B55C protection IP66,
with local controls

VSA...-B6SC VSA...-B66C without controls)

Degree of protection IP66, with local controls	Degree of protection IP55
VSA...-B6SC	VSA...-B55C
VSA...B66C -	
without controls)	

Figure 1: Models and enclosure versions

1.2 System overview

Figure 2: System overview (example: frame size FS2, degree of protection IP20)
(1) VSA... variable frequency drives
(2) DX-LN... mains choke, DX-LM3-... motor choke, DX-SIN3-... sine filter
(3) DX-BR... braking resistance
(4) DX-NET... fieldbus connection and DXA-EXT... expansion group
(5) DX-COM-STICK communication module and accessories (e. g. DX-CBL-... connection cable)
(6) DX-KEY-...keypad (external)

1.3 Checking the Delivery

1.3 Checking the Delivery

\rightarrowBefore opening the package, please check the nameplate on it to make sure that you received the correct variable speed drive.

The VSC series variable speed drives are carefully packaged and prepared for delivery. The devices should be shipped only in their original packaging with suitable transportation materials. Please take note of the labels and instructions on the packaging, as well as of those meant for the unpacked device.
Open the packaging with adequate tools and inspect the contents immediately after receipt in order to ensure that they are complete and undamaged.
The packaging must contain the following parts:

- VSC series variable speed drive
- an instructional leaflet

Figure 3: Equipment supplied (example: devices with IP20 / IP66 degree of protection with instruction leaflet)

1 VSA device series
1.4 Rated operational data

1.4 Rated operational data

1.4.1 Rating data on the nameplate

The device-specific rated operational data for the VSA variable frequency drive is listed on the nameplate of the device.

Figure 4: Nameplate on the device (example: frame size FS2, IP20 degree of protection)
The nameplate on top (nameplate (2) is a simplified version that can be used to clearly identify the device if the main nameplate (nameplate (1)) is blocked by other devices.

1.4 Rated operational data

The inscription of the nameplate has the following meaning (example):

Inscription	Meaning
VSA 124D3FB-A20C	Part no.: VSA = VSA series variable frequency drive 1 = Single-phase mains connection / three-phase motor connection $2=230 \mathrm{~V}$ mains voltage category $4 \mathrm{D} 3=4.3$ A rated operational current (4-decimal-1, output current) $\mathrm{F}=$ Integrated radio interference suppression filter $B=$ Integrated brake chopper A = LED display (7-segment text display) $20=$ IP20 degree of protection $\mathrm{C}=\mathrm{PCB}$ protection (coated board)
Input	Main terminal rating: Single-phase AC voltage ($\mathrm{U}_{\mathrm{e}} 1 \sim \mathrm{AC}$) Voltage 200-240 V, frequency $50 / 60 \mathrm{~Hz}$, input phase current (11 A)
Output	Load side (motor) rating: Three-phase AC voltage ($0-\mathrm{U}_{\mathrm{e}}$), output phase current (4.3 A), Output frequency ($0-500 \mathrm{~Hz}$) Assigned motor output: 0.75 kW with $230 \mathrm{~V} / 1 \mathrm{HP}$ with 230 V for a four-pole, internally cooled or surface-cooled three-phase motor ($1500 \mathrm{~min}^{-1}$ at $50 \mathrm{~Hz} / 1800 \mathrm{rpm}$ at 60 Hz)
Serial No.:	Serial number
IP20	Degree of protection of the housing: IP 20, UL (cUL) Open type
Software	Software version (1.20)
08112013	Manufacturing date: 11-08-2013
Max amb. $50{ }^{\circ} \mathrm{C}$	Maximum permissible ambient air temperature ($50{ }^{\circ} \mathrm{C}$)
$\rightarrow 9$	Variable speed drive is an electrical apparatus. Read the manual (in this case LIT-XXXXXXXX) before making any electrical connections and commissioning.

1 VSA device series
1.4 Rated operational data

1.4.2 Catalog number selection

The catalog number selection/part no. for VSA variable frequency drives is subdivided into three groups
Series - Power section - Model
The following figure shows it in greater detail:

Figure 5: Catalog number selection

1.4 Rated operational data

Catalog number selection

Inscription	Meaning
VSA 124D3FB-A20C	VSA = VSA series variable frequency drive 1 = Single-phase main terminal $2=$ Mains voltage category: $230 \mathrm{~V}(200 \mathrm{~V}-240 \mathrm{~V} \pm 10 \%$) 4D3 = Rated operational current: 4.3 A $\mathrm{N}=$ Internal radio interference suppression filter $B=$ Internal brake chopper A = LED display $20=$ IP20 degree of protection $\mathrm{C}=\mathrm{PCB}$ protection (coated board)
VSA 327DOFB-A20C	VSA = VSA series variable frequency drive $3=$ Three-phase main terminal $2=$ Mains voltage category: $230 \mathrm{~V}(200 \mathrm{~V}-240 \mathrm{~V} \pm 10 \%)$ 7D0 = Rated operational current: 7.0 A $\mathrm{N}=$ Internal radio interference suppression filter $B=$ Internal brake chopper A = LED display $20=$ IP20 degree of protection $\mathrm{C}=\mathrm{PCB}$ protection (coated board)
VSA 34014FB-B66C	VSA = VSA series variable frequency drive $3=$ Three-phase main terminal 4 = Mains voltage category: 400 V ($380 \mathrm{~V}-480 \mathrm{~V} \pm 10 \%$) 014 = Rated operational current: 14 A $\mathrm{N}=$ Internal radio interference suppression filter B = Internal brake chopper $B=0 L E D$ display $66=$ IP66 degree of protection $\mathrm{C}=\mathrm{PCB}$ protection (coated board)
VSA 35043NB-B55C	VSA $=$ VSA series variable frequency drive $3=$ Three-phase main terminal $5=$ Mains voltage category: $575 \mathrm{~V}(500 \mathrm{~V}-600 \mathrm{~V} \pm 10 \%)$ $043=$ Rated operational current: 43 A $\mathrm{N}=$ No internal radio interference suppression filter ${ }^{1}$) B $=$ Internal brake chopper $B=0 L E D$ display $55=$ IP55 degree of protection $\mathrm{C}=\mathrm{PCB}$ protection (coated board)

1) See following note
$\longrightarrow \quad \begin{aligned} & \text { For VSA } 35 \ldots \text {..NB-... devices, an external radio interference } \\ & \text { suppression filter is required for operation as per IEC/EN 61800-3. }\end{aligned}$

1 VSA device series
1.4 Rated operational data

1.4.3 Features

Mains supply voltage: 1 AC 230 V
Motor connection voltage: 3 AC 230 V, 50/60 Hz

Type		Assigned motor power (induction motor)					응 은 를 0			$B=Y e s$
		P1)	P2)							
		$\begin{aligned} & (230 \mathrm{~V}, \\ & 50 \mathrm{~Hz} \text {) } \end{aligned}$	$\begin{aligned} & (220-240 \mathrm{~V}, \\ & 60 \mathrm{~Hz}) \end{aligned}$							
	A	kW	HP							
VSA 124D3FB-A20C	4.3	0.75	1	LED	-	\checkmark	-	IP20	FS2	B
VSA 124D3FB-B66C	4.3	0.75	1	OLED	-	\checkmark	-	IP66	FS2	B
VSA 124D3FB-B6SC	4.3	0.75	1	OLED	\checkmark	\checkmark	-	IP66	FS2	B
VSA 127DOFB-A20C	7	1.5	2	LED	-	\checkmark	-	IP20	FS2	B
VSA 127DOFB-B66C	7	1.5	2	OLED	-	\checkmark	-	IP66	FS2	B
VSA 127DOFB-B6SC	7	1.5	2	OLED	\checkmark	\checkmark	-	IP66	FS2	B
VSA 12011FB-A20C	10.5	2.2	3	LED	-	\checkmark	-	IP20	FS2	B
VSA 12011FB-B66C	10.5	2.2	3	OLED	-	\checkmark	-	IP66	FS2	B
VSA 12011FB-B6SC	10.5	2.2	3	OLED	\checkmark	\checkmark	-	IP66	FS2	B

[^0]Mains supply voltage: 3 AC 230 V, 50/60 Hz

Motor connection voltage: 3 AC 230 V, 50/60 Hz

Type		Assign (induct P1) (230 V, 50 Hz) kW	power or) P2) (220-240 V, 60 Hz) HP							
VSA 324D3FB-A20C	4.3	0.75	1	LED	-	\checkmark	-	IP20	FS2	B
VSA 324D3FB-B66C	4.3	0.75	1	OLED	-	\checkmark	-	IP66	FS2	B
VSA 324D3FB-B6SC	4.3	0.75	1	OLED	\checkmark	\checkmark	-	IP66	FS2	B
VSA 327DOFB-A20C	7	1.5	2	LED	-	\checkmark	-	IP20	FS2	B
VSA 327DOFB-B66C	7	1.5	2	OLED	-	\checkmark	-	IP66	FS2	B
VSA 327DOFB-B6SC	7	1.5	2	OLED	\checkmark	\checkmark	-	IP66	FS2	B
VSA 32011FB-A20C	10.5	2.2	3	LED	-	\checkmark	-	IP20	FS2	B
VSA 32011FB-B66C	10.5	2.2	3	OLED	-	\checkmark	-	IP66	FS2	B
VSA 32011FB-B6SC	10.5	2.2	3	OLED	\checkmark	\checkmark	-	IP66	FS2	B
VSA 32018FB-A20C	18	4	5	LED	-	\checkmark	-	IP20	FS3	B
VSA 32018FB-B66C	18	4	5	OLED	-	\checkmark	-	IP66	FS3	B
VSA 32018FB-B6SC	18	4	5	OLED	\checkmark	\checkmark	-	IP66	FS3	B
VSA 32024FB-A20C	24	5.5	7.5	LED	-	\checkmark	-	IP20	FS3	B
VSA 32024FB-B55C	24	5.5	7.5	OLED	-	\checkmark	-	IP55	FS4	B
VSA 32030FB-B55C	30	7.5	10	OLED	-	\checkmark	-	IP55	FS4	B
VSA 32046FB-B55C	46	11	15	OLED	-	\checkmark	-	IP55	FS4	B
VSA 32061FB-B55C	61	15	20	OLED	-	\checkmark	\checkmark	IP55	FS5	B
VSA 32072FB-B55C	72	18.5	25	OLED	-	\checkmark	\checkmark	IP55	FS5	B
VSA 32090FB-B55C	90	22	30	OLED	-	\checkmark	\checkmark	IP55	FS6	B
VSA 32110FB-B55C	110	30	40	OLED	-	\checkmark	\checkmark	IP55	FS6	B
VSA 32150FB-B55C	150	37	50	OLED	-	\checkmark	\checkmark	IP55	FS6	B
VSA 32180FB-B55C	180	45	60	OLED	-	\checkmark	\checkmark	IP55	FS6	B
VSA 32202FB-B55C	202	55	75	OLED	-	\checkmark	\checkmark	IP55	FS7	B
VSA 32248FB-B55C	248	75	100	OLED	-	\checkmark	\checkmark	IP55	FS7	B

1) As per IEC standards
2) Quote from "Power Conversion Equipment - UL 508C, May 3, 2002".

1 VSA device series
1.4 Rated operational data

Mains supply voltage: 3 AC 400 V, 50 Hz/480 V, 60 Hz Output voltage: 3 AC $\mathbf{4 0 0}$ V, 50 Hz/440-480 V, 60 Hz

Type		Assign (induct P1) (400 V, 50 Hz) kW	$\begin{aligned} & \text { or power } \\ & \text { or) } \\ & \\ & \text { (2) } \\ & (440-480 \mathrm{~V}, \\ & 60 \mathrm{~Hz}) \\ & \mathrm{HP} \end{aligned}$							
VSA 342D2FB-A20C	2.2	0.75	1	LED	-	\checkmark	-	IP20	FS2	B
VSA 342D2FB-B66C	2.2	0.75	1	OLED	-	\checkmark	-	IP66	FS2	B
VSA 342D2FB-B6SC	2.2	0.75	1	OLED	\checkmark	\checkmark	-	IP66	FS2	B
VSA 344D1FB-A20C	4.1	1.5	2	LED	-	\checkmark	-	IP20	FS2	B
VSA 344D1FB-B66C	4.1	1.5	2	OLED	-	\checkmark	-	IP66	FS2	B
VSA 344D1FB-B6SC	4.1	1.5	2	OLED	\checkmark	\checkmark	-	IP66	FS2	B
VSA 345D8FB-A20C	5.8	2.2	3	LED	-	\checkmark	-	IP20	FS2	B
VSA 345D8FB-B66C	5.8	2.2	3	OLED	-	\checkmark	-	IP66	FS2	B
VSA 345D8FB-B6SC	5.8	2.2	3	OLED	\checkmark	\checkmark	-	IP66	FS2	B
VSA 349D5FB-A20C	9.5	4	5	LED	-	\checkmark	-	IP20	FS2	B
VSA 349D5FB-B66C	9.5	4	5	OLED	-	\checkmark	-	IP66	FS2	B
VSA 349D5FB-B6SC	9.5	4	5	OLED	\checkmark	\checkmark	-	IP66	FS2	B
VSA 34014FB-A20C	14	5.5	7.5	LED	-	\checkmark	-	IP20	FS3	B
VSA 34014FB-B66C	14	5.5	7.5	OLED	-	\checkmark	-	IP66	FS3	B
VSA 34014FB-B6SC	14	5.5	7.5	OLED	\checkmark	\checkmark	-	IP66	FS3	B
VSA 34018FB-A20C	18	7.5	10	LED	-	\checkmark	-	IP20	FS3	B
VSA 34018FB-B66C	18	7.5	10	OLED	-	\checkmark	-	IP66	FS3	B
VSA 34018FB-B6SC	18	7.5	10	OLED	\checkmark	\checkmark	-	IP66	FS3	B
VSA 34024FB-A20C	24	11	15	LED	-	\checkmark	-	IP20	FS3	B
VSA 34024FB-B55C	24	11	15	OLED	-	\checkmark	-	IP55	FS4	B
VSA 34030FB-B55C	30	15	20	OLED	-	\checkmark	-	IP55	FS4	B
VSA 34039FB-B55C	39	18.5	25	OLED	-	\checkmark	-	IP55	FS4	B
VSA 34046FB-B55C	46	22	30	OLED	-	\checkmark	-	IP55	FS4	B
VSA 34061FB-B55C	61	30	40	OLED	-	\checkmark	\checkmark	IP55	FS5	B
VSA 34072FB-B55C	72	37	50	OLED	-	\checkmark	\checkmark	IP55	FS5	B
VSA 34090FB-B55C	90	45	60	OLED	-	\checkmark	\checkmark	IP55	FS6	B
VSA 34110FB-B55C	110	55	75	OLED	-	\checkmark	\checkmark	IP55	FS6	B
VSA 34150FB-B55C	150	75	100	OLED	-	\checkmark	\checkmark	IP55	FS6	B
VSA 34180FB-B55C	180	90	125	OLED	-	\checkmark	\checkmark	IP55	FS6	B
VSA 34202FB-B55C	202	110	150	OLED	-	\checkmark	\checkmark	IP55	FS7	B
VSA 34240FB-B55C	240	132	200	OLED	-	\checkmark	\checkmark	IP55	FS7	B

1 VSA device series

1.4 Rated operational data

Type		Assign (induct P1) (400 V, 50 Hz) kW	$\begin{aligned} & \text { or power } \\ & \text { tor) } \\ & \\ & \\ & \text { P2) } \\ & (440-480 \mathrm{~V}, \\ & 60 \mathrm{~Hz} \text {) } \\ & \text { HP } \end{aligned}$							
VSA 34302FB-B55C	302	160	250	OLED	-	\checkmark	\checkmark	IP55	FS7	B
VSA 34370FB-B20C3)	370	200	300	OLED	-	\checkmark	-	IP20	FS8	B
VSA 34450FB-B20C3)	450	250	350	OLED	-	\checkmark	-	IP20	FS8	B

1) As per IEC standards
2) Quote from "Power Conversion Equipment - UL 508C, May 3, 2002".
3) If it is not guaranteed that the system percentage impedance is greater than or equal to 1%, a mains choke must be connected. Your u_{k} value should fall between 1 and 4%.

Examples:
VSA 34370FB-B20C \rightarrow DX-LN3-370
VSA 34450FB-B20C \rightarrow DX-LN3-450

1 VSA device series
1.4 Rated operational data

Mains supply voltage: 3 AC 500 V, 50 Hz/575 V, 60 Hz Output voltage: 3 AC 500 V, $50 \mathrm{~Hz} / 550-600 \mathrm{~V}, 60 \mathrm{~Hz}$

Type		Assigned motor (induction motor) P ($500 \mathrm{~V}, 50 \mathrm{~Hz}$) kW	$\text { P1) }(550-600 \mathrm{~V}, 60 \mathrm{~Hz})$ HP							
VSA 352D1NB-A20C	2.1	0.75	1	LED	-	-	-	IP20	FS2	B
VSA 352D1NB-B66C	2.1	0.75	1	OLED	-	-	-	IP66	FS2	B
VSA 352D1NB-B6SC	2.1	0.75	1	OLED	\checkmark	-	-	IP66	FS2	B
VSA 353D1NB-A20C	3.1	1.5	2	LED	-	-	-	IP20	FS2	B
VSA 353D1NB-B66C	3.1	1.5	2	OLED	-	-	-	IP66	FS2	B
VSA 353D1NB-B6SC	3.1	1.5	2	OLED	\checkmark	-	-	IP66	FS2	B
VSA 354D1NB-A20C	4.1	2.2	3	LED	-	-	-	IP20	FS2	B
VSA 354D1NB-B66C	4.1	2.2	3	OLED	-	-	-	IP66	FS2	B
VSA 354D1NB-B6SC	4.1	2.2	3	OLED	\checkmark	-	-	IP66	FS2	B
VSA 356D5NB-A20C	6.5	4	5	LED	-	-	-	IP20	FS2	B
VSA 356D5NB-B66C	6.5	4	5	OLED	-	-	-	IP66	FS2	B
VSA 356D5NB-B6SC	6.5	4	5	OLED	\checkmark	-	-	IP66	FS2	B
VSA 359DONB-A20C	9	5.5	7.5	LED	-	-	-	IP20	FS2	B
VSA 359DONB-B66C	9	5.5	7.5	OLED	-	-	-	IP66	FS2	B
VSA 359DONB-B6SC	9	5.5	7.5	OLED	\checkmark	-	-	IP66	FS2	B
VSA 35012NB-A20C	12	7.5	10	LED	-	-	-	IP20	FS3	B
VSA 35012NB-B66C	12	7.5	10	OLED	-	-	-	IP66	FS3	B
VSA 35012NB-B6SC	12	7.5	10	OLED	\checkmark	-	-	IP66	FS3	B
VSA 35017NB-A20C	17	11	15	LED	-	-	-	IP20	FS3	B
VSA 35017NB-B66C	17	11	15	OLED	-	-	-	IP66	FS3	B
VSA 35017NB-B6SC	17	11	15	OLED	\checkmark	-	-	IP66	FS3	B
VSA 35022NB-A20C	22	15	20	LED	-	-	-	IP20	FS3	B
VSA 35022NB-B55C	22	15	20	OLED	-	-	-	IP55	FS4	B
VSA 35028NB-B55C	28	18.5	25	OLED	-	-	-	IP55	FS4	B
VSA 35034NB-B55C	34	22	30	OLED	-	-	-	IP55	FS4	B
VSA 35043NB-B55C	43	30	40	OLED	-	-	\checkmark	IP55	FS5	B
VSA 35054NB-B55C	54	37	50	OLED	-	-	\checkmark	IP55	FS5	B
VSA 35065NB-B55C	65	45	60	OLED	-	-	\checkmark	IP55	FS5	B
VSA 35078NB-B55C	78	55	75	OLED	-	-	\checkmark	IP55	FS6	B
VSA 35105NB-B55C	105	75	100	OLED	-	-	\checkmark	IP55	FS7	B
VSA 35130NB-B55C	130	90	125	OLED	-	-	\checkmark	IP55	FS6	B
VSA 35150NB-B55C	150	110	150	OLED	-	-	\checkmark	IP55	FS7	B

[^1]
1.5 Description

1.5 Description

1.5.1 Degree of protection IP20 (FS2, FS3)

The following drawing serves as an example showing the designations used for the elements in VSA variable frequency drives with a frame size of FS2 and an IP20 degree of protection.

Figure 6: VSA designations (FS2, IP20)
(1) Fixing holes (screw fastening)
(2) Connection terminals in power section (mains side)
(3) Cutout for mounting on mounting rail
(4) Control terminals (plug-in)
(5) Relay terminals (plug-in)
(6) Connection terminals in power section (motor feeder)
(7) Slot for fieldbus connection or expansion module
(8) Communication interface (RJ45)
(9) Operating unit with 5 control buttons and LED display
(10) Info card

1.5.2 Degree of protection IP20 (FS8)

The following drawing serves as an example showing the designations used for the elements in VSA variable frequency drives with a frame size of FS8 and an IP20 degree of protection.

Figure 7: VSA designations (FS8, IP20)
(1) Operating unit with 5 control buttons and OLED display
(2) Slot for fieldbus connection or expansion module
(3) Control signal terminals and relay terminals (plug-in)
(4) Eyebolts
(5) Device fan
(6) Fixing holes
(7) PE terminal bolt
(8) Enclosure cover for the connection terminals in the power section

The info cards are located at the back of the enclosure cover.

Figure 8: Info cards (back of enclosure cover (8))

1.5 Description

1.5.3 Degree of protection IP55 (FS4, FS5, FS6, FS7)

The following drawing serves as an example showing the designations used for the elements in VSA variable frequency drives with a frame size of FS4 and an IP55 degree of protection.

Figure 9: VSA designations (FS4, IP55)
(1) Operating unit with 5 control buttons and OLED display
(2) Slot for fieldbus connection or expansion module
(3) Control signal terminals and relay terminals (plug-in)
(4) Connection terminals in power section
(5) Device fan
(6) Fixing holes
(7) Blanking plate for installing cable glands for an IP55 degree of protection (without blanking plate: IP40 degree of protection)
(8) Retainer for the control section connection cables
(9) Communication interface (RJ45)
(10) Enclosure cover (connection terminals)

The info card is located inside the lower enclosure cover (10) (removed in the figure above).

Blanking plate

Figure 10:Blanking plate with holes for cable glands (FS4, FS5)
> \rightarrow
> The equipment supplied with frame sizes FS4 and FS5 includes an additional blanking plate (7) that already has holes for the cable glands.

1.5.4 Degree of protection IP66 (FS2, FS3)

The following drawing serves as an example showing the designations used for the elements in VSA variable frequency drives with a frame size of FS2 and an IP66 degree of protection.

Figure 11:VSA descriptions (FS2, IP66)
(1) Local controls on VSA...-B6SC
(2) Operating unit with 5 control buttons and OLED display
(3) Control and relay terminals (plug-in)
(4) Connection terminals in power section

Cableway for EMC cable gland
(5) Rating plate
(6) Fixing holes
(7) Heat sink
(8) Connection terminals in power section and

Cableway for cable gland
(9) Slot for fieldbus connection or expansion module
(10) Communication interface (RJ45)
(11) Cover

The info cards (11) are located inside the lower enclosure cover, which features three knockouts for cable glands to the control section.

1.6 Voltage categories

1.6 Voltage categories

VSA variable frequency drives are divided into three voltage categories:

- $200 \mathrm{~V}: 200-240 \mathrm{~V} \pm 10 \% \rightarrow$ VSA 12..., VSA 32...
- $400 \mathrm{~V}: 380-480 \mathrm{~V} \pm 10 \% \rightarrow$ VSA $34 \ldots$
- $575 \mathrm{~V}: 500-600 \mathrm{~V} \pm 10 \% \rightarrow$ VSA $\mathbf{3 5} \ldots$
- VSA 12...
- Single-phase mains connection, rated operating voltage 230 V
- $U_{L N}=1 \sim, 200-240 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}$
- $\mathrm{I}_{\mathrm{e}}=4.3-11 \mathrm{~A}$
- Motor: 0.75-2.2 kW (230 V, 50 Hz$), 1-3 \mathrm{HP}(230 \mathrm{~V}, 60 \mathrm{~Hz})$

Figure 12:VSA 12...FB-...

- VSA 32...
- Three-phase power supply, rated operating voltage 230 V
- $U_{L N}=3 \sim, 200-240 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}$
- $\mathrm{I}_{\mathrm{e}}=4.3-46 \mathrm{~A}$
- Motor: 0.75-11 kW (230 V, 50 Hz), 1-15 HP (230 V, 60 Hz)

Figure 13:VSA 32...FB-..

Figure 14:VSA 32...FB-B55C with DC link choke

- VSA 34...
- Three-phase power supply, rated operating voltage 400/480 V
- $U_{\mathrm{LN}}=3 \sim, 380-480 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}$
- $l_{e}=2.2-46 \mathrm{~A}$
- Motor: 0.75-22 kW (400 V, 50 Hz), 1 - $30 \mathrm{HP}(460 \mathrm{~V}, 60 \mathrm{~Hz})$

Figure 15:VSA 34...FB-...

- $l_{e}=61-302 A$
- Motor: 30-160 kW (230 V, 50 Hz$), 40-250 \mathrm{HP}(460 \mathrm{~V}, 60 \mathrm{~Hz})$

Figure 16:VSA 34...FB-B55C with DC link choke

- $I_{e}=370-450 \mathrm{~A}$
- Motor: 200-250 kW ($400 \mathrm{~V}, 50 \mathrm{~Hz}$), $300-350 \mathrm{HP}(460 \mathrm{~V}, 60 \mathrm{~Hz})$

Figure 17:VSA 34...FB-B20C (external mains choke required)

- VSA 35...
- Three-phase power supply, rated operating voltage $500 / 575 \mathrm{~V}$
- $U_{L N}=3 \sim, 500-600 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}$
- $\mathrm{I}_{\mathrm{e}}=2.1-34 \mathrm{~A}$
- Motor: 1.1-22 kW (500 V, 50 Hz), 1.5-30 HP (575 V, 60 Hz)

Figure 18:VSA 35...NB-... (without radio interference suppression filter)

- $l_{e}=43-150 \mathrm{~A}$
- Motor: 30-110 kW (500 V, 50 Hz), 40-150 HP (575 V, 60 Hz)

Figure 19:VSA 34...NB-B55C with DC link choke (without radio interference suppression filter)

1.7 Selection criteria

Select the variable frequency drive according to the supply voltage ULN of the supply system and the rated operational current of the assigned motor. The circuit type (Δ / Y) of the motor must be selected according to the supply voltage.
The variable frequency drive's rated output current l_{e} must be greater than or equal to the rated motor current.

Figure 20:Selection criteria - Rating plate data
When selecting the drive, the following criteria must be known:

- Mains voltage = motor supply voltage (e.g. 3~ 400 V),
- Type of motor (e.g., three-phase asynchronous motor),
- The rated motor current (recommended value - depends on the motor's configuration and on the power supply)
- Ambient conditions: ambient temperature, control cabinet installation with IP20 degree of protection or direct local installation with IP66 degree of protection.

Example based on figure 20

- Mains voltage: $3 \sim 400 \mathrm{~V}, 50 \mathrm{~Hz}$
- Star-connected circuit (400 V)
- Rated operational current: $1.9 \mathrm{~A}(400 \mathrm{~V})$
- Control panel installation \rightarrow IP20 degree of protection
- Ambient air temperature max. $50^{\circ} \mathrm{C}$ without output reduction, IP20
\rightarrow Variable frequency drive that should be selected: VSA 342D2FB-B20C
- VSA 34...: 3-phase main terminal, rated operating voltage: 400 V
- VSA...2D2...: 2.2 A - The variable frequency drive's rated operational current (output current) guarantees that the motor will be supplied with the required rated operational current (1.9 A).

\rightarrow
When connecting multiple motors in parallel to the output of a variable frequency drive, the motor currents are added geometrically - separated by effective and idle current components.

Accordingly, when selecting a variable frequency drive, make sure to size it in such a way that it will be able to supply the total resulting current. It may be necessary to install motor chokes or sine filters between the variable frequency drive and the motor in order to dampen and compensate for deviating current values.

1.8 Output reduction (derating)

Derating the VSA variable frequency drive / limiting the maximum continuous output current $\left(I_{2}\right)$ will generally be necessary if, during operation:

- The ambient temperature is higher than $40^{\circ} \mathrm{C}$
- An installation altitude of $1,000 \mathrm{~m}$ is exceeded
- The effective switching frequency is higher than the minimum value

The following tables specify the factors that need to be applied when selecting a VSA variable frequency drive if the drive will be run outside these conditions:

Derating for ambient temperature

Enclosure degree of protection	Maximum ambient temperature without derating	Derate
\|P20	$50^{\circ} \mathrm{C}$	Maximum permissible ambient air temperature
$\mathbb{\| P 4 0 ^ { 1) }}$	$40^{\circ} \mathrm{C}$	none
\|P5	$40^{\circ} \mathrm{C}$	none
IP66	$40^{\circ} \mathrm{C}$	1.5% per K

Derating for installation altitude

Enclosure degree of protection	Maximum height without derating	Derate	Maximum permissible altitude as per IEC (UL)
IP20, IP401),	1000 m	1% per 100 m	$4000 \mathrm{~m}(2000 \mathrm{~m})$
IP55, IP66			

Derating for switching frequency

Enclosure degree	Switching frequency (P2-24), setting (audible) ${ }^{\text {2) }}$					
	4 kHz	8 kHz	12 kHz	16 kHz	24 kHz	32 kHz
IP20	none	none	20 \%	30%	40 \%	50 \%
(P401)	none	none	10 \%	15 \%	25 \%	Do not set
IP55	none	10 \%	10 \%	15 \%	25 \%	Do not set
IP66	none	10 \%	25 \%	35%	50%	50 \%

1) VSA variable frequency drive with IP55 enclosure and connection area open from below (without blanking plate and cable glands).
2) The pulse frequency's effective rms value will be approximately half the value set with parameter P2-24 (double modulation).

\longrightarrow For more information on the subject of derating, please refer to Application Note "VSC Variable Speed Drives - Dependency of the output current on switching frequency and ambient air temperature".

Examples showing how to apply derating factors

4 kW motor ($400 \mathrm{~V}, 8.5 \mathrm{~A}$), installation altitude of $2,000 \mathrm{~m}$ above sea level, ambient temperature of $42^{\circ} \mathrm{C}$, switching frequency of 12 kHz .
a)

Selected variable frequency drive: VSA 349D5FB-A20C, rated operational current of 9.5 A , switching frequency of 8 kHz (default setting).
Required derating factors:

- For the 12 kHz switching frequency: $\mathbf{2 0 \%}$
- For the $2,000 \mathrm{~m}$ installation altitude: $\mathbf{1 0 \%}$ (1% per 100 m above $1,000 \mathrm{~m}$, $2,000 m-1,000 m=1,000 m, 1,000 m / 100 m=10$)
- For the $42^{\circ} \mathrm{C}$ ambient temperature: None (not needed for VSA 349D5FB-A20C, IP20 degree of protection)
$9.5 \mathrm{~A}-20 \%-10 \%=(9.5 \times 0.8 \times 0.9) \mathrm{A}=\mathbf{6 . 8 4} \mathbf{A}$
The VSA's permissible continuous rated operational current of 6.84 A is lower than the motor's required rated operational current (8.5 A).
Reducing the pulse frequency to 8 kHz will make it possible to operate the motor continuously at an altitude of 2,000 m ($9.5 \mathrm{~A}-10 \%=8.55 \mathrm{~A}$).
\longrightarrow Use a variable frequency drive belonging to a higher output class and repeat the calculations in order to ensure that a sufficiently high output current will be available continuously.

b)

Selected variable frequency drive: VSA 34014FB-B55C, rated operational current of 14 A .
Required derating factors:

- For the 12 kHz switching frequency: $\mathbf{1 0} \%$
- For the $2,000 \mathrm{~m}$ installation altitude: $\mathbf{1 0} \%$ (1% per 100 m above $1,000 \mathrm{~m}$,
$2,000 m-1,000 m=1,000 m, 1,000 m / 100 m=10$)
- For the $42{ }^{\circ} \mathrm{C}$ ambient temperature: $\mathbf{3} \%$
(1.5 \% per kelvin, $42{ }^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}=2 \mathrm{~K}$, IP55 degree of protection).
$14 \mathrm{~A}-10 \%-10 \%-3 \%=(14 \times 0.9 \times 0.9 \times 0.97) \mathrm{A}=$ approx. 11 A
The VSA 34014FB-B55C variable frequency drive meets the necessary operating conditions.

1.9 Proper use

The VSA variable frequency drives are electrical devices for controlling variable speed drives with three-phase motors. They are designed for installation in machines or for use in combination with other components within a machine or system.
The VSA variable frequency drives are not domestic appliances. They are designed only for industrial use as system components.
If the variable speed starter is installed in a machine, it is prohibited to place it into operation until it has been determined that the corresponding machine meets the safety and protection requirements set forth in Machinery Safety Directive 2006/42/EC (e.g., by complying with EN 60204). The user of the equipment is responsible for ensuring that the machine use complies with the relevant EU Directives.
The CE markings on VSA variable frequency drives confirm that the devices meet the requirements set forth in the European Union's Low Voltage and EMC Directives (Directives 2006/95/EC, EMC 2004/108/EC and ROHS 2011/ 65/EU) when used in their typical drive configuration.
In the described system configurations, VSA variable frequency drives are suitable for use in public and non-public networks.
A connection of a VSA variable frequency drive to IT networks (networks without reference to earth potential) is permissible only to a limited extent, since the device's built-in filter capacitors connect the network with the earth potential (enclosure).
In unearthed networks, this can result in hazardous situations or damage to the device (insulation monitoring is required!).

To the output (terminals $\mathrm{U}, \mathrm{V}, \mathrm{W}$) of the VSA variable frequency drive you must not:

- connect a voltage or capacitive loads (e.g. phase compensation capacitors),
- connect multiple variable frequency drives in parallel
- make a direct connection to the input (bypass).

\rightarrow

Always observe the technical data and connection conditions!
For additional information, refer to the equipment nameplate or label at the frequency inverter and the documentation. Any other use will be considered to be an improper use of the device.

1.10 Maintenance and inspection

VSA variable speed starters are maintenance-free, provided that the general rating data, as well as the technical data for the specific models in use, is observed. Please note, however, that external influences may affect the operation and lifespan of a VSA variable frequency drive.
We therefore recommend that the devices are checked regularly and the following maintenance measures are carried out at the specified intervals.

Table 2: Recommended maintenance

Maintenance measures	Maintenance interval
Clean cooling vents (cooling slits)	Please enquire
Check that the fan is working properly	6-24 months (depending on the environment)
Check the filters in the control panel door (see the manufacturer's specifications)	6-24 months (depending on the environment)
Check all earth connections to make sure they are intact	On a regular basis, at periodic intervals
Check the tightening torques of the terminals (control signal terminals, power terminals)	On a regular basis, at periodic intervals
Check connection terminals and all metallic surfaces for corrosion	6-24 months; when stored, no more than 12 months later (depending on the environment)
Motor cables and shield connection (EMC)	According to manufacturer specifications, no later than 5 years
Charge capacitors	$\stackrel{12 \text { months }}{\rightarrow}$ Section 1.12, ,"Charging the internal DC link capacitors")

There are no plans for replacing or repairing individual components of VSA variable frequency drives.
If an FS2 or FS3 (IP20, IP66) VSA variable frequency drive is damaged or ruined by external factors, it will not be possible to repair it.
In the case of frame sizes FS4 to FS8, it may be possible for a qualified and certified service center to repair it (\rightarrow Section 1.13 , "Service and warranty").
Dispose of the device according to the applicable environmental laws and provisions for the disposal of electrical or electronic devices.

1.11 Storage

If the VSA variable frequency drive is stored before use, suitable ambient conditions must be ensured at the site of storage:

- Storage temperature: $-40-+60^{\circ} \mathrm{C}$,
- Relative average air humidity: < 95 \%, non condensing (EN 50178),
- To prevent damage to the variable speed starter's internal DC link capacitors, it is not recommended to store the variable frequency drive for more than 12 months $(\rightarrow$ Section 1.12, „Charging the internal DC link capacitors").

1.12 Charging the internal DC link capacitors

After extended storage times or extended downtimes during which no power is supplied (> 12 months), the capacitors in the internal DC link must be recharged in a controlled manner in order to prevent damage. To do this, the VSA variable frequency drive must be supplied with power, with a controlled DC power supply unit, via two mains connection terminals (e.g. L1 and L2).

In order to prevent the capacitors from having excessively high leakage currents, the inrush current should be limited to approximately 300 to 800 mA (depending on the relevant rating). The variable frequency drive must not be enabled during this time (i.e. no start signal). After this, the DC voltage must be set to the magnitudes for the corresponding DC link voltage ($U_{D C} \sim 1.41 \times U_{e}$) and applied for one hour at least (regeneration time).

- VSA $12 \ldots$, VSA $32 \ldots$: about 324 V DC at $\mathrm{U}_{\mathrm{e}}=230 \mathrm{~V}$ AC
- VSA 34...: about 560 V DC at $U_{e}=400 \mathrm{VAC}$
- VSA $35 \ldots$: about 705 V DC at $\mathrm{U}_{\mathrm{e}}=500 \mathrm{~V}$ AC

1.13 Service and warranty

In the unlikely event that you have a problem with your VSA variable frequency drive, please contact your local sales office.
When you call, have the following data ready:

- The exact variable frequency drive part number (see nameplate),
- the date of purchase,
- a detailed description of the problem which has occurred with the variable frequency drive.
If some of the information printed on the rating plate is not legible, please state only the data which are clearly legible.
Information concerning the guarantee can be found in the Terms and Conditions.

Please contact your local office:

Voice: 1-800-ASK-JNSN [275-5676] (US); 1-800-321-4023 (CA)
FAX: 1-800-356-1191 (US); 1-800-321-4024 (CA)
Support Hours of Operation: Monday-Friday, 6:30 a.m.-5:30 p.m. CST (No evening or weekend Customer Service hours).

If you are in the U.S. or Canada, you can take advantage of our toll-free line for technical assistance. Technical support engineers are available for calls during regular business hours.
Johnson Controls Field Support Center 1-888-281-3792 Monday-Friday, 7:30 a.m.-5:30 p.m. CST
email: CGFieldSupportCenter@jci.com

2 Engineering

2.1 Introduction

This chapter describes the most important features in the energy circuit of a magnet system (PDS = Power Drive System), which you should take into consideration in your project planning.
It contains instructions that must be followed when determining which device to use with which rated motor output, as well as when selecting protection devices and switchgear, selecting cables, cable entries, and operating the VSA variable frequency drive.
All applicable laws and local standards must be complied with when planning and carrying out the installation. Not following the recommendations provided may result in problems what will not be covered by the warranty.

An example for a magnet system

(1) Electrical supply system (mains connection, grounding system configuration, mains voltage, frequency, voltage balance, THD, compensation systems)
(2) Overall system - consisting of motor and load systems
(3) PDS = Power drive system
(4) Safety and switching (disconnecting devices, fuses, cable crosssectional areas, residual current circuitbreakers, mains contactors)
(5) $\mathrm{CDM}=$ Complete drive module:

Variable frequency drive with auxiliary equipment (mains and motor chokes, radio interference suppression filter, brake resistor, sine filter)
BDM = Basic drive module:
VSA variable frequency drive
(6) Motor and sensor
(Temperature, motor speed)
(7) Load system:

Driven system equipment (process, speed, torque)

Figure 21:Magnet system example (overall system as its own system or as part of a larger system)

2.2 Electrical power network

2.2.1 Mains connection and network configuration

VSA variable frequency drives can be connected to and run on all neutral point-grounded AC supply systems (TN-S, TN-C, TT grounding systems please refer to IEC 60364) without any limitations.

Figure 22:AC supply systems with earthed center point

\longrightarrow
While planning the project, consider a symmetrical distribution to the three main phase conductors, if multiple variable frequency drives with single-phase supplies are to be connected.
The total current of all single-phase consumers is not to cause an overload of the neutral conductor (N -conductor).

The connection and operation of variable frequency drives to asymmetrically grounded TN networks (phase-grounded delta network "Grounded Delta", USA) or non-grounded or high-resistance grounded (over 30Ω) IT networks is only conditionally permissible (internal radio interference suppression filters).
\longrightarrow Operation on non-earthed networks (IT) requires the use of suitable insulation monitors (e.g. pulse-code measurement method).
$\longrightarrow \quad \begin{aligned} & \text { In networks with an earthed main pole, the maximum phase- } \\ & \text { earth voltage must not exceed } 300 \mathrm{VAC} \text {. }\end{aligned}$
VSA...-A20C variable frequency drives with an FS2 or FS3 frame size can be connected to corner-grounded systems or IT grounding systems (not grounded, insulated). The internal radio interference suppression filter must be disabled in these cases.

Generally speaking, measures designed to ensure electromagnetic compatibility are required in drive systems in order to ensure compliance with the applicable regulations in the EMC and Low Voltage Directives.

Good earthing measures are a prerequisite for the effective insert of further measures such as screen earth kit or filters here. Without respective grounding measures, further steps are superfluous.

2 Engineering

2.2 Electrical power network

VSA 35... (500-600 V) devices do not feature a radio interference suppression filter and can be connected to corner-grounded systems and IT grounding systems.

2.2.2 Mains voltage and frequency

The standardized rated operating voltages (IEC 60038, VDE 017-1) of power utilities guarantee the following conditions at the connection point:

- Deviation from the rated value of voltage:
maximum ± 10 \%
- Deviation in voltage phase balance: maximum ± 3 \%
- Deviation from rated value of the frequency: maximum ± 4 \%

The broad tolerance band of the VSA variable frequency drive considers the rated value for
European as (EU: ULN $=230 \mathrm{~V} / 400 \mathrm{~V}, 50 \mathrm{~Hz}$) and
American as (USA: ULN $=240 \mathrm{~V} / 480 \mathrm{~V}, 60 \mathrm{~Hz}$) standard voltages:

- $230 \mathrm{~V}, 50 \mathrm{~Hz}$ (EU) and $240 \mathrm{~V}, 60 \mathrm{~Hz}$ (USA) at VSA $12 \ldots$, VSA $32 \ldots$ $200 \mathrm{~V}-10 \%-240 \mathrm{~V}+10 \%$ ($180 \mathrm{~V}-0$ \% - $264 \mathrm{~V}+0$ \%)
- $400 \mathrm{~V}, 50 \mathrm{~Hz}(E U)$ and $480 \mathrm{~V}, 60 \mathrm{~Hz}(\mathrm{USA})$ at VSA $34 \ldots$ $380 \mathrm{~V}-10 \%-480 \mathrm{~V}+10 \%$ ($342 \mathrm{~V}-0 \%-528 \mathrm{~V}+0 \%$)
- $500 \mathrm{~V}, 50 \mathrm{~Hz}$ (EU) and $575 \mathrm{~V}, 60 \mathrm{~Hz}$ (USA) at VSA $35 \ldots$ $500 \mathrm{~V}-10 \%-600 \mathrm{~V}+10 \%$ ($450 \mathrm{~V}-0 \%-660 \mathrm{~V}+0 \%$)

The permissible frequency range for all voltage categories is $50 / 60 \mathrm{~Hz}$ ($48 \mathrm{~Hz}-0 \%-62 \mathrm{~Hz}+0 \%$).

2.2.3 Voltage balance

Unbalanced voltages and deviations from the ideal voltage shape may occur in three-phase AC supply systems if the conductors are loaded unevenly and if large output loads are connected directly. These supply voltage unbalances may cause the diodes in the variable frequency drive's rectifier bridge converter to be loaded unevenly, resulting in premature diode failure.

In the project planning for the connection of three-phase supplied variable frequency drives (VSA 3...), consider only AC supply systems that handle permitted asymmetric divergences in the mains voltage $\leqq+3 \%$.

If this condition is not fulfilled, or symmetry at the connection location is not known, the use of an assigned main choke is recommended.

2.2.4 Total Harmonic Distortion (THD)

The THD value (THD = Total Harmonic Distortion) is defined in standard IEC/ EN 61800-3 as the ratio of the rms value of all harmonic components to the rms value of the fundamental frequency.

In order to reduce the THD value (up to 30%),
recommended to use a DX-LN... mains choke
(\rightarrow Section 2.4, "Mains chokes", page 47). $\begin{aligned} & \text { FS5, FS6, and FS7 VSA variable frequency driver } \\ & \text { in their DC link. Using mains chokes in order } \\ & \text { harmonics is not necessary in this case. }\end{aligned}$ If it is not guaranteed that the system percentage impedance is greater than or equal to 1%, a mains choke must be connected. Your uk value should fall between 1 and 4%.

Examples:
VA 34370FB-B20C \rightarrow DX-LN3-370
VA 34450FB-B20C \rightarrow DX-LN3-450

2.2.5 Idle power compensation devices

Compensation on the power supply side is not required for the variable frequency drives of the VSA series. From the AC supply system they only take on very little reactive power of the fundamental harmonics ($\cos \varphi \sim 0.98$).
\rightarrow
In the AC supply systems with non-choked reactive current compensation devices, current deviations can enable parallel resonance and undefinable circumstances.

In the project planning for the connection of variable frequency drives to AC supply systems with undefined circumstances, consider using main chokes.

2.3 Safety and switching

2.3.1 Disconnecting device

\rightarrowInstall a manual disconnecting device between the mains connection and the VSA variable frequency drive. This disconnecting device must be designed in such a way that it can be interlocked in its open position for installation and maintenance work.

In the European Union, this disconnecting device must be one of the following devices in order to comply with European Directives as per standard EN 60204-1, "Safety of machinery":

- An AC-23B utilization category disconnector (EN 60947-3)
- A disconnector with an auxiliary contact that in all cases will disconnect the load circuit before the disconnector's main contacts open (EN 60947-3)
- A circuit-breaker designed to disconnect the circuit as per EN 60947-2

In all other regions, the applicable national and local safety regulations must be complied with.

2.3.2 Fuses

The VSA variable frequency drive and the corresponding supply cables must be protected from thermal overload and short-circuits.

The fuse ratings and cable cross-sectional areas (wire gauges) for the connection on the mains side will depend on the VSA variable frequency drive's input current lLN.
\longrightarrow For the recommended fuse sizing and assignments, please refer to \rightarrow Section 6.5, „Fuses", page 164.

The fuses will protect the supply cable in the event of a short-circuit, limit any damage to the variable frequency drive, and prevent damage to upstream devices in the event of a short-circuit in the variable frequency drive.

2.3.3 Cable cross-sections

The mains cables and motor cables must be sized as required by local standards and by the load currents that will be involved.
The PE conductor's cross-sectional area must be the same as the phase conductors' cross-sectional area. The connection terminals marked with Θ) must be connected to the earth-current circuit.

```
NOTICE
The specified minimum PE conductor cross-sections (EN 61800-5-1) must be maintained.
```

If there are leakage currents greater than 3.5 mA , a reinforced earthing (PE) must be connected, as required by standard EN 61800-5-1. The cable crosssection must be at least $10 \mathrm{~mm}^{2}$, or the earthing system must consist of two separately connected earthing cables.
$\longrightarrow \quad \rightarrow$ Section 6.2, ,'Specific rated operational data", page 147

$$
\longrightarrow \rightarrow \underset{\substack{\text { requirements for the motor cables. }}}{\rightarrow \text { Section } 3.5 \text {, } \mathrm{EMC} \text { installation", page } 83 \text { goes over the EMC }}
$$

A symmetrical, fully screened (360°), low-impedance motor cable must be used. The length of the motor cable depends on the RFI class and the environment.
For US installations, UL-listed fuses, fuse bases, and cables (AWG) should be used exclusively. These cables must have a temperature rating of $70^{\circ} \mathrm{C}$ ($158{ }^{\circ} \mathrm{F}$), and will often require installation inside a metal conduit (please consult the applicable local standards).
\rightarrow
For the rated cable cross-sectional areas for VSA variable frequency drives, please refer to the technical data chapter in \rightarrow Section 6.4, "Cable cross-sections", page 161.

2 Engineering

2.3 Safety and switching

2.3.4 Residual current circuit-breaker

When using variable frequency drives (VSA 3...) that work with a three-phase power supply (L1, L2, L3), make sure to use type B AC/DC sensitive residual current devices exclusively.

When using variable frequency drives that work with a single-phase power supply (L, N) (VSA 12...), you may use type A and type B residual current devices (RCD).

NOTICE

Residual current circuit-breakers (RCD = residual current device) should only be installed between the power feed system (the AC supply system supplying power) and the VSA variable frequency drive - not at the output to the motor!

The leakage currents' magnitude will generally depend on:

- length of the motor cable,
- shielding of the motor cable,
- height of the pulse frequency (switching frequency of the inverter),
- Design of the radio interference suppression filter
- grounding measures at the site of the motor.

Other protective measures against direct and indirect contact can be used for VSA variable frequency drives, including isolating them from the supply system with the use of a transformer.

2.3.5 Mains contactors

The mains contactor enables an operational switching on and off of the supply voltage for the variable frequency drive and switching off in case of a fault. The mains contactor is designed based on the mains-side input current ILN of the VSA variable frequency drive for utilization category AC-1
(IEC 60947) and the ambient air temperature at the location of use.
$\longrightarrow \quad$ The mains contactors listed here are based on the variable frequency drive's rated input-side mains current llN without an external mains choke.
The contactor should be selected based on thermal current $I_{t h}=I_{\mathrm{e}}(\mathrm{AC}-1)$ at the specified ambient air temperature.

NOTICE

The inching operation is not permissible via the mains contactor (Pause time $\geqq 30$ s between switching off and on).
\longrightarrow For UL-compliant installation and operation, the mains side switching devices must allow for a 1.25 times higher input current.
\longrightarrow
For the rated mains contactors for VSA variable frequency drives, please refer to the technical data chapter in \rightarrow Section 6.6, "Mains contactors", page 168.

2.3.6 Using a bypass connection

WARNING
Never connect the VSA variable frequency drive's output terminals U, V, and W to the power feed system (L1, L2, L3)! Connecting the mains voltage to the output terminals can result in the variable frequency drive being irreparably damaged.

If a bypass is required, use mechanically linked switches or contactors or electrically interlocked contactors in order to ensure that the motor terminals will not be simultaneously connected to the mains connection and to the variable frequency drive's output terminals.

(1) 01 thermal overload and short-circuit protection
(2) F1 fuse and F2 overload relay (alternative to (1))

01 Mains contactor
T1 VSA variable frequency drive
S1 Interlocked switching between variable frequency drive and bypass
F2 Motor protection (overload relay, alternative to (1))
M1 Three-phase motor

Figure 23:Bypass motor control (example)

2.4 Mains chokes

Mains chokes reduce the total harmonic distortion, the mains feedback and improve the power factor. The apparent current on the mains side is then reduced by around 30%.
Towards the variable frequency drive, the main chokes dampen the interference from the supply network. This increases the electric strength of the variable frequency drive and lengthens the lifespan (diodes of the mains power rectifier, internal DC link capacitors).
$\longrightarrow \quad \begin{aligned} & \text { It is not necessary to use mains chokes in order to run the VSA } \\ & \text { variable frequency drive. However, we recommend using a mains }\end{aligned}$ choke if the electrical supply system's quality is not known.

While planning the project, consider that a main choke is only assigned to a single variable frequency drive for decoupling.

When using an adapting transformer (assigned to a single variable frequency drive), a main choke is not necessary.
Main chokes are designed based on the mains-side input current (ILN) of the variable frequency drive.
$\longrightarrow \begin{aligned} & \text { FS5, FS6, and FS7 VSA variable frequency drives feature mains } \\ & \text { chokes in their DC link. Using chokes in order to reduce current }\end{aligned}$ harmonics is not necessary in this case.
$\longrightarrow \quad \begin{aligned} & \text { Only for FS8 VSA variable frequency drives: } \\ & \text { VSA 34370FB-B20C, VSA 34450FB-B20C }\end{aligned}$
If it is not guaranteed that the system percentage impedance is greater than or equal to 1%, a mains choke must be connected. Your uk value should fall between 1 and 4%.

Examples:
VSA 34370FB-B20C \rightarrow DX-LN3-370
VSA 34450FB-B20C \rightarrow DX-LN3-450

When the frequency inverter is operating at its rated current limit, the mains choke with a uk value of around 4% causes a reduction of the frequency inverter's maximum possible output voltage $\left(\mathrm{U}_{2}\right)$ to about 96% of the mains voltage (U_{LN}).
$\longrightarrow \begin{aligned} & \text { For the rated mains contactors for VSA variable frequency } \\ & \text { drives, please refer to the technical data chapter in }\end{aligned}$ \rightarrow Section 6.7, „Mains chokes", page 172.

2 Engineering

2.5 Radio interference suppression filter

2.5 Radio interference suppression filter

VSA 12...FB-..., VSA 32...FB-..., and VSA 34...FB-... variable frequency drives feature an internal radio interference suppression filter. In combination with a motor cable that is earthed and screened 360° on both ends, they make it possible to comply with the sensitive EMC limits of category C 1 in the 1st environment (IEC/EN 61800-3) when there is conducted interference. This requires installation in accordance with EMC requirements, as well as not exceeding permissible motor cable lengths.
The standard motor cable lengths are as follows:

- 1 m for category C1 in the 1 st environment
- 5 m for category C 2 in the 1 st and 2nd environments
- 25 m for category C3 in the 2nd environment

Longer motor cable lengths can be used if additional, external radio interference suppression filters (DX-EMC...) are used. For more information, please refer to the following tables.

Additional measures used to reduce EMC limits and use longer motor cable lengths are possible in combination with motor chokes and sine filters.

VSA 35...NB-... devices do not feature an internal radio interference suppression filter. DX-EMC34... radio interference suppression filters can be connected upstream in order to run these devices on a three-phase mains voltage of 500 V .

Please enquire for radio interference suppression filters for higher mains voltages.

In the case of power drive systems (PDS) with variable frequency drives, electromagnetic compatibility (EMC) measures must already be taken into account during the engineering stage, as making changes during assembly and installation and retroactively fixing things will be more expensive.

The maximum unscreened cable length between the radio interference suppression filter and the variable frequency drive should not exceed 300 to 500 mm (depending on the VSA variable frequency drive's frame size).

For the rated radio interference suppression filters for VSA variable frequency drives, please refer to the technical data chapter in \rightarrow Section 6.8, „Radio interference suppression filter", page 176.

2.6 Braking resistances

In certain operating states, the motor may run as a generator in certain applications (regenerative braking operation).
Examples include:

- Lowering in hoisting gear and conveyor applications
- Controlled speed reduction in the case of large load inertias (flywheels)
- A fast speed reduction in dynamic travel drives

When the motor operates as a generator, its braking energy will be fed into the variable frequency drive's DC link via the inverter. DC link voltage UDC will be increased as a result. If the voltage value is too high, the VSA variable frequency drive will disable its inverter, after which the motor will coast uncontrolled.
If there is a braking chopper and a connected braking resistance R_{B}, the braking energy fed back into the variable frequency drive can be dissipated in order to limit the DC link voltage.

VSA...B-... variable frequency drives feature an integrated braking chopper. The brake resistors are connected to the internal braking transistor with terminals DC+ and BR so that they will be connected in parallel to the DC link. In addition to this, the braking chopper must be enabled using parameter P1-05 (= 2 or $=3$). The braking chopper will be switched on automatically if the braking energy being fed back causes the DC link voltage to increase to the switch-on voltage's magnitude.

Device series	Main terminal	Voltage class	Braking chopper on	Braking chopper off
VSA 12...	Single-phase	230 V	390 V	378 V
VSA 32...	Three-phase	230 V	390 V	378 V
VSA 34...	Three-phase	400 V	780 V	756 V
VSA 35...	Three-phase	575 V	975 V	945 V

For example, in the case of VSA $34 \ldots$ variable frequency drives, the braking chopper will be switched on at a DC link voltage of approximately 780 VDC and then back off at 756 VDC. During this stage, the braking transistor and the brake resistor will be active continuously. In order to protect against a thermal overload, parameter P6-19 can be used to set resistance value R_{B} and parameter P6-20 can be used to set rated power PDB for the brake resistor.
It is often difficult to specify a suitable brake resistor for specific applications. This is due to the fact that not all of the application conditions required for sizing will be available when the engineering stage starts. Because of this, and as a simplification, brake resistors are instead usually classified for two load groups:

- Low duty: Low load with short braking duration and low duty factor (up to about 25%), e.g., for horizontal conveyors and handling equipment for bulk cargo and general cargo, end carriages, sliding doors, and turbomachinery (centrifugal pumps, fans).
- High duty: High load with long braking duration and high duty factor (at least 30%), e.g., for elevators, downhill conveyors, winders, centrifuges, flywheel motors, and large fans.

Figure 24:Braking cycle, fast motor stop with external brake resistor

Selecting brake resistors

Brake resistors are selected based on continuous power dissipation PDB and maximum peak pulse power Peak. The brake resistor must be adequate for both powers.

The maximum pulse power is defined by the braking torque - kinetic energy $W_{\text {kin }}$ during braking - that is fed back by the motor during braking. A simplified method that can be used is to take the variable frequency drive's braking power $\mathrm{P}_{\text {max }}$ or the rated motor output and use it as peak pulse power Peak for sizing purposes, since the mechanical braking power will be reduced by the motor's and inverter's efficiency.

$$
P_{\text {Peak }} \sim P_{\max }=\frac{1}{2} \times \frac{W_{\text {kin }}}{t_{\text {Brakin }}}
$$

The required rated power / continuous rating for braking resistance P_{DB} is calculated using braking energy $W_{\text {kin }}$ and cycle time tc:

$$
P_{\text {DB }}=\frac{W_{\text {kin }}}{t_{C}}
$$

If the kinetic energy is not known, you will need the ratio of braking time $t_{\text {Braking }}$ to cycle time tc:

$$
\mathrm{DF}[\%]=\frac{\mathrm{t}_{\text {Brakin }}}{\mathrm{t}_{\mathrm{C}}} \times 100 \%
$$

The required continuous rating for a duty factor of 10 \% (= DF[\%]), for example, can be calculated as follows:

$$
P_{D B}=P_{\text {Peak }} \times 10 \%
$$

This means that the brake resistor's continuous rating PDB will always be lower than maximum pulse power Peak by the DF[\%] factor.
Resistance R_{B} must be at least as high as the breaking transistor's minimum permissible resistance $\mathrm{R}_{\text {min }}$.
\longrightarrow Use brake resistors with the recommended RBrec resistance values for the VSA variable frequency drives' ratings.
\longrightarrow For the rated brake resistors for VSA variable frequency drives, please refer to the technical data chapter in \rightarrow Section 6.9, „Braking resistances", page 182.

2.7 Motor chokes

It is recommended to use a motor choke if using long cable lengths and/or connecting several motors in parallel. The motor reactor is in the output of the variable frequency drive. Its rated operational current must always be greater than/equal to the rated operational current of variable frequency drive.
For VSA variable frequency drives, it is recommended to use a motor choke for motor cable lengths of 50 meters or more. Doing so may result in the following improvements:

- Longer maximum permissible screened motor cable length, up to 200 m Longer maximum permissible motor cable length without screening, up 300 m
- Current smoothing and du/dt value ($\mathrm{kV} / \mathrm{hs}$) attenuation, providing additional protection for the winding insulation inside the motor,
- Motor noise and heat build-up will be reduced.
$\longrightarrow \quad \begin{aligned} & \text { Take into account the maximum permissible motor cable } \\ & \text { lengths for the relevant EMC interference category. }\end{aligned}$

Figure 25:DX-LM3 ... rated operational data: $U_{\text {max }}=750 \mathrm{~V}, \mathrm{f}_{2}=0-400 \mathrm{~Hz}, \mathrm{f}_{\mathrm{PWM}}=8-24 \mathrm{kHz}(\mathrm{P} 2-24$ setting on VSA)

It is also recommended to use a motor choke at the variable frequency drive's output if several motors with identical or different rated operational data are being run in parallel (V/Hz control only). In this case, the motor choke will compensate for the total resistance and total inductance decreases caused by the parallel circuit and will attenuate the cables' higher stray capacitance.
$\longrightarrow \begin{aligned} & \text { For the rated motor chokes for VSA variable frequency drives, } \\ & \text { please refer to the technical data chapter in }\end{aligned}$ \rightarrow Section 6.10, „Motor chokes", page 188.

2.8 Sine filter

The DX-SIN3... sine filter removes high-frequency components from the variable frequency drive's output voltage $\left(\mathrm{U}_{2}\right)$ reducing conducted and emitted interference as a result. The sine filter's output voltage will have a sinusoidal shape with a small superimposed ripple voltage.
The sinusoidal voltage's total harmonic distortion is typically 5 to 10%. This will reduce noise and losses in the motor.

Figure 26:Maximum permissible motor cable lengths
Screened motor cable: $\mathrm{U}_{2} \leqq 230 \mathrm{~V} \rightarrow 1 \leqq 200 \mathrm{~m} ; \mathrm{U}_{2} \leqq 500 \mathrm{~V} \rightarrow 1 \leqq 150 \mathrm{~m}$ Unscreened motor cable: $\mathrm{U}_{2} \leqq 230 \mathrm{~V} \rightarrow\left|\leqq 300 \mathrm{~m} ; \mathrm{U}_{2} \leqq 500 \mathrm{~V} \rightarrow\right| \leqq 200 \mathrm{~m}$

\longrightarrow Sine filter DX-SIN3... should only be operated with fixed switching frequencies.

Accordingly, the carrier frequency (P2-24) must be set to the value set in parameter P6-02 (auto temperature management) (P2-24 = P6-02).

Permissible carrier frequencies for VSA with DX-SIN3...: $1 \xlongequal{\wedge} 8 \mathrm{kHz} ; 2 \bumpeq 12 \mathrm{kHz}$

As a result of double modulation, the value set on the VSA variable frequency drive will be twice the effective value on the sine filter ($1 \wedge 8 \mathrm{kHz} \rightarrow 4 \mathrm{kHz} ; 2 \triangleq 12 \mathrm{kHz} \rightarrow 6 \mathrm{kHz}$).
$\longrightarrow \begin{aligned} & \text { For the rated sine filters for VSA variable frequency drives, } \\ & \text { please refer to the }\end{aligned}$ please refer to the technical data chapter in \rightarrow Section 6.11, „Sine filter", page 190.

2 Engineering

2.9 Three-phase motor

2.9 Three-phase motor

2.9.1 Motor selection

\rightarrowCheck whether the VSA variable frequency drive you selected and the AC motor you will be using are compatible with each other as per the corresponding voltage (mains and motor voltage) and rated operational current.

General recommendations for motor selection:

- Use three-phase induction motors with squirrel-cage rotors and surface cooling - also referred to as three-phase asynchronous motors or standard motors. Other types of motors, such as external rotor motors, wound rotor motors, reluctance motors, permanent magnet motors, synchronous motors, and servomotors can also be run with VSA variable frequency drives, but will normally require additional engineering, modifying the various parameters, and detailed information from the motor manufacturer.
- Only use motors that have insulation class F (maximum steady state temperature of $155^{\circ} \mathrm{C}$) at least.
- Choose 4 pole motors preferably (synchronous speed: $1500 \mathrm{~min}^{-1}$ at 50 Hz and $1800 \mathrm{~min}^{-1}$ at 60 Hz).
- Take the operating conditions into account for S1 operation (IEC 60034-1).
- Do not oversize the motor, i.e., the motor should not be more than one rating level higher than the rated motor output.
- In the case of undersized motors, the motor output should not be more than one rating level lower than the rated rating level (in order to ensure that the motor will be protected).
For significantly lower motor outputs, the "frequency control (V/Hz)" operating mode must be set (P4-01 = 2).

2.9.2 Circuit types with three-phase motors

A three-phase motor's stator winding can be connected in a star connection or delta circuit as per the mains voltage ($\mathrm{U}_{\mathrm{LN}}=$ output voltage U_{2}) and the rated operational data on the motor's nameplate (rating plate).

Figure 27: Example of a motor rating plate

Figure 28:Configuration types:
Star-connected circuit (left), delta circuit (right)

Examples based on figures 27 and 28

Motor in star connection, mains voltage: three-phase 400 V ; output voltage: three-phase 400 V \rightarrow VIA 342D2...
Motor in delta circuit, mains voltage: single-phase 230 V ; output voltage: three-phase 230 V \rightarrow VGA 124D3...

Motor connection

VSA variable frequency drives	according to IFC	according to UL
U	$\mathrm{U} 1(-\mathrm{U} 2)$	$\mathrm{T} 1(-\mathrm{T} 4)$
	$\mathrm{V} 1(-\mathrm{V} 2)$	$\mathrm{T} 2(-\mathrm{T} 5)$
W	$\mathrm{W} 1(-\mathrm{W} 2)$	$\mathrm{T} 3(-\mathrm{T} 6)$

2 Engineering

2.9 Three-phase motor

2.9.3 Connecting Motors in Parallel

When in V / Hz control mode (default setting, P4-01 = 2), VSA variable frequency drives can be used to run multiple motors simultaneously.
> \longrightarrow If multiple motors are connected in parallel, the total of their motor currents must be lower than the VSA variable frequency drive's rated operational current.

Connecting motors in parallel reduces the load resistance at the variable frequency drive output. The total stator inductance will be reduced and the cables' stray capacitance will be increased. The result will be greater harmonic distortion when compared to a single-motor connection. A motor choke or a sine filter should be used at the variable frequency drive's output in order to reduce this harmonic distortion.
\longrightarrow
When running multiple motors in parallel with a single variable frequency drive, the individual motors' outputs should not be more than three output classes apart.
$\xrightarrow{>}$
If several motors are being run in parallel, you will not be able to use the variable frequency drive's electronic motor protection. As a result, each individual motor must be protected with thermistors and/or an overload relay. Within a frequency range of 20 to 120 Hz , the PKE electronic motor-protective circuitbreaker can be used for motor protection at a VSA variable frequency drive's output as well.

NOTICE

If multiple motors are being run simultaneously using a single variable frequency drive, make sure to size the individual motors' contactors as required for utilization category AC-3. The motor contactors must be selected according to the rated operational currents of the motors that will be connected.

The total of the motor currents in operation, plus one motor's inrush current, must be less than the rated operational current of the variable frequency drive.
In applications with motors that will be connected and disconnected, we recommend using a motor choke.

Figure 29:Example: Parallel connection of several motors to one frequency inverter

2 Engineering

2.9 Three-phase motor

2.9.4 Single-phase AC motors

It is not permitted to run VSA variable frequency drives with single-phase AC motors (induction motors), single-phase asynchronous motors (capacitor motors), shaded-pole motors, etc.

2.9.5 Connecting EX motors

The following aspects must be taken into account when connecting hazardous location motors:

- A VSA variable frequency drive can be installed in an explosion-proof enclosure within the hazardous location or in a control panel outside the hazardous location.
- All applicable industry-specific and country-specific regulations for hazardous locations (ATEX 100a) must be complied with.
- The specifications and instructions provided by the motor's manufacturer with regard to operation with a variable frequency drive - e.g., whether motor reactors ($\mathrm{dV} / \mathrm{dt}$ limiting) or sine filters are required - must be taken into account.
- Temperature monitors in the motor windings (thermistor, Thermo-Click) must not be connected directly to the variable frequency drive, but instead must be connected through a relay approved for the hazardous location (e.g. EMT6).

2.9.6 Synchronous, reluctance, and PM motors

VSA variable frequency drives can be used to run premium efficiency threephase motors, such as:

- IE3 and IE4 efficiency classes as defined in IEC/EN 60034-30, EU No. 4/2014
- Permanent magnet motors (PM motor),
- Synchronous reluctance motors (SynRM)
- Brushless DC motors.

These motor technologies have comparable efficiencies at their rated operating point and identical efficiency classes, but also have significant differences when it comes to their startup behavior and partial-load operation.

Moreover, the corresponding nameplate specifications ($315 \mathrm{~V}, \mathrm{R}_{20 *}=2.1 \Omega$, $\mathrm{L}^{*}=20 \mathrm{mH}$, and Upol $=195 \mathrm{~V} / 1000 \mathrm{rpm}$, for example) will deviate significantly from the usual specifications.

2.10 STO function

2.10.1 Overview

VSA variable frequency drives include the STO function (STO = Safe Torque Off) as part of their standard range of functionalities. This function meets the requirements for variable-speed drive systems defined in Part 5-2 of the IEC 61800 standard and ensures that torque-generating energy is no longer able to act on the motor shaft and that unintended starting is prevented.
Moreover, this state is monitored internally in the drive.
The STO function can be used anywhere where the corresponding motor will come to a stop by itself in a sufficiently short amount of time as a result of the corresponding load torque or friction, as well as in cases in which coasting has no safety implications.

$v=$ Motor speed
$\mathrm{t} 1=\mathrm{STO}$ shutdown Start of coasting

Gray = Coasting time for motor without safety implications

Figure 30:: STO conforming to Stop Category 0
safety function corresponds to uncontrolled stopping as defined in IEC 60204-1, Stop Category 0.
It can be used if it is necessary to switch off the power in order to prevent unexpected starts.

Additional measures (such as mechanical brakes) may be required in order to prevent hazards in which external factors are involved (e.g., suspended loads falling down).

CAUTION
When used in conjunction with permanent magnet motors and in the unlikely case of multiple output semiconductors (IGBTs) failing, having the STO function activated may result in a motor shaft rotational movement of 180 degrees/p ($p=$ Number of motor pole pairs).

DANGER

The STO function is an electronic mechanism that does not provide sufficient protection against electric shock. Additional potential isolation measures may be accordingly required (e.g., switch-disconnector).

2.10.2 TÜV certification

VSA variable frequency drives with a TÜV logo on their nameplate feature an STO function that complies with the following standards:

Standard	Classification
EN 61800-5-2:2007	Type 2: "Safely removed torque"
EN ISO 13849-1:2006	PLd
EN 61508 (Part 1 to 7)	SIL 2
EN60204-1	Stop category 0 : "Uncontrolled stopping by means of immediately cutting the power supply to the machine drive elements"
EN 62061	SIL CL 2

\rightarrow
The following information and descriptions for the STO function are translations of the original description in English (TÜV specification).

2.10.3 Safety relay specification

Safety component monitoring requires an approved safety relay.
When used together with a VSA variable frequency drive, the following minimum requirements must be met for the STO function:

Standard requirement	SIL 2 or PL d SC 3 or better with interlocked opposing contacts
Number of output contacts	Two independent
Rated switching voltage	30 V DC
Current carrying capacity	100 mA (at least)

2.10.4 STO-compatible installation

DANGER

Make sure to use proper earthing and select cables based on local regulations or standards.

The variable frequency drive may have a leakage current greater than 3.5 mA AC or 10 mA DC . In addition, the grounding cable must be sized for the maximum mains fault current, which is normally limited by fuses or miniature circuit-breakers.
Appropriately sized fuses or miniature circuit-breakers should be installed at the mains supply for the variable frequency drive in line with local regulations or standards.

DANGER

The "STO wiring" must be protected against unintended short-circuits and unintended tampering and modifications. It must be ensured that the "STO input signal" (control signal terminals $12 / 13$) has a safe operating state.

CAUTION

Variable frequency drives with an IP 20 degree of protection that are used in environments with a pollution degree of 2 must be installed in a control panel with a degree of protection of IP 54 or better.
$\longrightarrow \quad$ In order to prevent damage to the variable frequency drive, the devices should remain in their original packaging until right before they are installed.
They must be stored in a dry and clean area with a temperature range of $-40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.
$\longrightarrow \quad \begin{aligned} & \text { The conductor cross-section used for the STO installation } \\ & \text { should be between } 0.05 \text { and } 2.5 \mathrm{~mm}^{2} \text { (AWG 30-12). }\end{aligned}$
The length of the cable connected to the control signal terminals should not exceed 25 meters.

\rightarrow

In addition to the wiring guidelines for an installation meeting EMC requirements (\rightarrow Section 3.5, „EMC installation", page 83), the following requirements must be observed as well for the "STO wiring":

- The STO-compatible installation must be protected against short-circuits and tampering. The cables in the STO circuit can be mechanically protected with a closed cable duct or with a conduit (eks = ground and short-circuit-safe installation).
- The 24 VDC power supply for the STO inputs can be supplied from the VSA's internal 24 VDC voltage or from an external 24 VDC power supply.
- Accordingly, the VSA variable frequency drive should be wired as described below:

STO installation with internal VSA supply voltage (24 V DC)

Figure 31:STO installation with internal control voltage

The connecting cable from control signal terminal $1(+24 \mathrm{~V})$ to the safety relay's contact and the connecting cable from the safety relay's contact to control signal terminal 12 (STO+) must be wired individually and installed separately (eks, separate mechanical protection with two closed cable ducts or two conduits). These two separately wired single cables must be screened, and the corresponding cable screen must be earthed (PES).

STO installation with external supply voltage (24 V DC)
$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array}$
(II)(II)(II)(ID)(II)(ID)(ID)(ID) (II)

Control signal terminals

12: STO+, logical high signal, input = 18-30 VDC from the safety controller

13: STO-, O-V connection to internal control voltage (terminal 7 or 9)

Figure 32:: STO installation with external control voltage
The two connecting cables going from the external control voltage and the safety relay to control signal terminals 12 (STO+) and 13 (STO-) must be twisted.
This twisted pair must be routed inside a closed cable duct or conduit (eks) and must also be screened, with the corresponding cable screen being earthed (PES).

The external control voltage should meet the following specifications:

Rated control voltage		24 V DC
Voltage for the logical STO high signal		$18-30 \mathrm{~V} \mathrm{DC}$
Current carrying capacity	100 mA	

2.10.5 STO function pick-up time

The total pick-up time for the STO function is the time that elapses from the moment a safety-relevant event occurs on the system's components (aggregate) to the moment a safe state is reached (in this case: Stop category 0 as defined in IEC 60204-1):

- The pick-up time from the moment the STO inputs (control signal terminals 12 and 13) become de-energized to the moment when the outputs in the power section $(\mathrm{U}, \mathrm{V}, \mathrm{W})$ are in a state in which no torque is produced in the motor (STO function activated) is less than 1 ms .
- The pick-up time from the moment the STO inputs (control signal terminals 12 and 13) become de-energized to the moment the STO monitoring status changes is less than 20 ms .
- The pick-up time from the moment a fault is detected in the STO circuit to the moment 5 to- F is signaled (fault indicator, digital output) is less than 20 ms .

2.10.6 STO function parameters

\longrightarrow
The STO function is always activated and enabled in VSA variable frequency drives - regardless of the operating mode or of parameter changes made by the user.

During normal operation (supply voltage present), there are various options for monitoring the STO inputs' (control signal terminals 12 and 13) state.
If the STO inputs are de-energized:

- The corresponding operating unit will display i $\boldsymbol{\prime}$ (t) Exception: If the VSA variable frequency drive detects a fault, the corresponding fault code will be displayed (not: $/$ In it it
- Relay RO1 will be switched off if parameter P2-15 is set to 13 (changeover contact: 14-16 = open, 14-15 = closed)
- Relay RO2 will be switched off if parameter P2-18 is set to 13 (N/O: 17-18 = open).

Table 3: STO-relevant parameters

PNU	Modbus ID	Access right RUN/ STOP	ro/rw	Type name	Value	Description	DS
P2-15	237	RUN	rw	R01 function	0-13	Used to select the function for output relay RO1 Possible values: - 0: RUN, enable (FWD/REV) - 1: READY, variable frequency drive ready for operation - 2: Speed = speed reference value - 3: Speed > 0 - 4: Speed \geqq limit value: $\mathrm{ON}: \geqq$ P2-16; OFF: < P2-17 - 5: Motor current \geqq limit value: $\mathrm{ON}: \geqq \mathrm{P} 2-16$; OFF: < P2-17 - 6: Torque \geqq limit value: $\mathrm{ON}: \geqq \mathrm{P} 2-16$; OFF: < P2-17 - 7: Analog input $\mathrm{Al} 2 \geqq$ limit value: ON: >P2-16; OFF: < P2-17 - 8: reserved - 9: reserved - 9: reserved - 10: reserved - 11: reserved - 12: reserved 13: STO status (STO = Safe Torque OFF)	1
P2-18	240	RUN	rw	RO2 function	0-13	Used to select the function for output relay RO2 Possible values: - 0: RUN, enable (FWD/REV) - 1: READY, variable frequency drive ready for operation - 2: Speed = speed reference value - 3: Speed >0 - 4: Speed \geqq limit value: $\mathrm{ON}: \geqq$ P2-19; OFF: < P2-20 - 5: Motor current \geqq limit value: $\mathrm{ON}: \geqq \mathrm{P} 2-19$; OFF: < P2-20 - 6: Torque \geqq limit value: $\mathrm{ON}: \geqq \mathrm{P} 2-19$; OFF: < P2-20 - 7: Analog input $\mathrm{Al} 2 \geqq$ limit value: ON: >P2-19; OFF: < P2-20 - 8: Control signal for the external brake of a hoist drive (enables the "hoisting gear" mode). ON: Output frequency \geqq P2-07 while there is a START command present (FWD/REV). OFF: Output frequency \leqq P2-08 if there is no START command present (FWD/REV). - 9: reserved - 9: reserved - 10: reserved - 11: reserved - 12: reserved 13: STO status (STO = Safe Torque OFF)	0

PNU	Modbus ID	Access right RUN/ STOP	ro/rw	Type name	Value	Description	DS
P2-36	258	RUN	rw	Start Mode	Edge-r Auto-0 Auto-5	Used to define the drive's behavior in relation to the enable signal and to configure automatic restarting after a fault. Possible values: - $\mathbf{0}$: Edge-r: If the enable signal is already active before the supply voltage is switched on or before a RESET, the drive will not start. Instead, the drive will wait for a rising edge before starting. - 1: Auto-0: If the enable signal is already active before the supply voltage is switched on or before a RESET, the drive will start automatically. - 2 to 6: Auto-1 to Auto-5: If the device is switched off due to a fault, the drive will automatically try to start again. The drive can make up to 5 start attempts, with an interval of P6-03 between each attempt. As long as the supply voltage is not switched off, the counter's contents will be retained, i.e., the contents of the counter used to count the number of start attempts. If the drive fails to start automatically on the last attempt, it will be switched off with a fault message, after which a manual RESET will be required. Notice: Automatic starting is only possible if the control commands are received via the terminals (P1-12 = 0, P1-12 = 11, if the unit automatically switches to terminal-based operation after a loss of communication). Observe the following warning!	Auto-0

DANGER

For the automatic start mode (Ruto- $\boldsymbol{\Delta}$ to $\boldsymbol{A} \boldsymbol{f}$ to-5), personnel protection and the impact on the drive system must be analyzed separately.

2.10.7 Fault messages

The following table lists the error messages relevant to the STO function, as well as potential causes and fixes.

Table 4: Fault messages

Display ${ }^{1}$	Fault code ${ }^{2}$ Modbus RTU [hex]	Designation	Potential causes and fixes
PS-trP	05	Power section fault	- Fault message from the power section's output. - Check the connection to the motor (short-circuit, earth fault). - Disconnect the cable from terminals U, V, W. If the fault message cannot be reset, please contact your nearest Johnson Controls representative.
Sto-F	29	Internal STO circuit fault	Please contact your closest Johnson Controls representative.

2.10.8 STO function checklist

A drive's STO function should always be checked before initial commissioning, after maintenance, and at regular maintenance intervals. This check should include the following tests:

No.	Occupation	Note
1	The STO inputs (control signal terminals 12, 13) are deenergized. i nH it it is displayed when the motor is stopped and there is a stop command on the VSA variable frequency drive.	
2	The STO inputs (control signal terminals 12,13) are deenergized and the VSA variable frequency drive receives a start command (depends on the mode selected in P1-13, Config Select DI). ; nH it is displayed. The motor does not start.	
3	The STO inputs (control signal terminals 12, 13) are powered with 24 VDC and the VSA variable frequency drive receives a start command (depends on the mode selected in P1-13, DI Config Select). The motor starts normally and is controlled by the VSA variable frequency drive.	
4	The motor is running while being controlled by the VSA variable frequency drive and an STO input (control signal terminal 12 or 13) is de-energized. / nH 线 it is displayed and the motor coasts,	

2.10.9 Regular maintenance

The STO function should always be included in a scheduled maintenance process (at least once per year) so that the function will be tested on a regular basis to make sure it is intact and complete - especially after changes are made to the safety system and after repairs are made.
During the corresponding inspection and testing, the variable frequency drive's installation and operating environment must be checked:

- The ambient temperature must fall within the admissible range.
- The heat sink and fan must be free of dust and other foreign particles. The fan must be able to rotate freely.
- The enclosure in which the variable frequency drive is installed must be free of dust and condensate.
- The enclosure fan and air filter must provide the required airflow.
- All electrical connections must be checked: The screw terminals must be properly tightened and the power cables must not show any signs of heat damage.

2.10.10 "Safe stop" function

The purpose of the STO function is to prevent the drive from making the motor produce a torque when there is no input signal at terminals 12 and 13 . This makes it possible to integrate the drive into a complete safety system in which the "safe stop" function needs to be fully implemented.

DANGER

The STO function cannot prevent unexpected restarting or automatic restarting (if the corresponding parameters are configured for this type of restarting). Accordingly, it must not be used to perform maintenance or cleaning work on the machine.

The STO function eliminates the need to use electro-mechanical contactors with self-monitoring auxiliary contacts in order to implement safety functions.

DANGER

In certain applications, additional measuring and monitoring equipment may be needed in order to meet the requirements for the system's safety function.
The STO function does not include motor braking, and the VSA's braking function cannot be considered a fail-safe method by itself.
If a motor braking function is required, an appropriate safety relay and/or a mechanical braking system or a similar method must be used.

The STO function integrated into VSA variable frequency drives meets the definition of a "safe stop" as specified in IEC 61800-5-2 and of a noncontrolled stop as per Category 0 (emergency switching off) as specified in IEC 60204-1. This means that the motor will coast when the STO function is activated. The method used for stopping must be appropriate for the system being driven by the motor.

The STO function is approved for use as a fail-safe method even in cases in which the STO signal is not present and a single fault has occurred in the drive. The drive was accordingly tested in accordance with the following security standards:

	SIL (Safety Integrity Level)	$\mathrm{PFH}_{\mathrm{d}}$ (Probability of dangerous Failures per Hour)	SFF (\%) (Safe Failure Fraction)	Lifetime assumed
EN 61800-5-2	2	1.23E-09 1/h (0.12 \% of SIL 2)	50	20 Yrs
	PL (Performance Level)	CCF (\%) (Common Cause Failure)		
EN ISO 13849-1	PLd	1		
	SIL CL			
EN 62061_x	SIL CL 2			

The values provided here can only be ensured if the VSA variable frequency drive is installed in an environment that stays within the permissible limits:

- Ambient temperature range: -10 to $+50^{\circ} \mathrm{C}$, taking into account any limits that depend on frame size and degree of protection
- Maximum altitude for rated operation: 1000 m above sea level, with altitude derating of 1% for every 100 m above 1000 m (up to max. 4000 m for IEC / 2000 m for UL)
- Relative humidity: < 95\% (non-condensing). The VSA variable frequency drive must always be free of frost and moisture.

2 Engineering 2.10 STO function

3 Installation

3.1 Introduction

This chapter provides a description of the mounting and the electrical connection for the VSA variable frequency drive.
\longrightarrow While mounting and/or assembling the variable frequency drive, cover all ventilation slots in order to ensure that no foreign bodies can enter the device.
$\longrightarrow \quad \begin{aligned} & \text { Perform all installation work with the specified tools and without } \\ & \text { the use of excessive force. }\end{aligned}$

3.2 Mounting position

VSA variable frequency drives are available with three enclosure versions:

- IP20/NEMA 0 degree of protection for use in control panels,
- IP55/NEMA 12 degree of protection,
- IP66/NEMA 4X degree of protection.

The IP55 and IP66 enclosure versions provide protection against moisture and dust, allowing them to be used under harsh conditions indoors.
Without the required additional measures, using the device in the following environments is strictly prohibited:

- Explosion-proof Ranges
- Environments with damaging substances:
- Oils and acids
- Gases and fumes
- Dust
- Radiated noise
- Environments with mechanical vibration and impact loads that go beyond the requirements in EN 50178.
- Areas in which the variable frequency drive takes care of safety functions that must guarantee machine and personnel protection.

3.3 Mounting

The engineering instructions in this section are meant to show how to install the device in a suitable enclosure for devices with degree of protection IP20 and IP55 in compliance with standard EN 60529 and/or any other applicable local regulations.

- The enclosures must be made of a material with high thermal conductivity.
- If a control panel with ventilation openings is used, the openings must be located above and below the variable frequency drive in order to allow for proper air circulation. Air should be delivered from the bottom and conveyed outwards through the top.
- If the environment outside the control panel contains dirt particles (e.g., dust), a suitable particulate filter must be placed on the ventilation openings and forced ventilation must be used. The filters must be maintained and cleaned if necessary.
- An appropriate enclosed control panel (without ventilation openings) must be used in environments containing large percentages or amounts of humidity, salt, or chemicals.
\rightarrow
Install the VSA variable frequency drive only on a nonflammable mounting base (e.g., on a metal plate).

Figure 33:Surface mounting on metal plate
IP66 VSA variable frequency drives must be installed as required by the local conditions for this degree of protection.

3.3.1 Mounting position

VSA series variable frequency drives are designed to be mounted vertically. The maximum permissible inclination is 30°.

Figure 34:Mounting position

3.3.2 Cooling measures

In order to guarantee sufficient air circulation, enough thermal clearance must be ensured according to the frame size (rating) of the frequency inverter.

Figure 35:Clearances for air cooling (left: IP20; right: IP66)

\rightarrowThe variable frequency drives can be mounted side by side without any lateral clearance between them.

Table 5: Minimum clearances and required cooling airflow

Frame size (degree of protection)	a		b		c		Required airflow	
	MM	in	MM	Occur in	mm	Occur in	m ${ }^{3} / \mathrm{h}$	cfm
FS2 (IP20)	50	1.97	31	1.22	75	2.95	70	41
FS2 (IP66)	0	0	12	0.47	150	5.91	0	0
FS3 (IP20)	50	1.97	31	1.22	100	3.94	190	112
FS3 (IP66)	0	0	13	0.51	150	5.91	0	0
FS4 (IP 55)	10	0.39	71	2.8	200	7.87	425	250
FS5 (IP 55)	10	0.39	70	2.76	200	7.87	425	250
FS6 (IP 55)	10	0.39	140	5.52	200	7.87	650	383
FS7 (IP 55)	10	0.39	140	5.52	200	7.87	650	383
FS8 (IP20)	50	1.97	162	6.38	350	13.78	825	485

The values in 5 are recommended values for an ambient air temperature of up to $+50^{\circ} \mathrm{C}$ for IP20 and $+40^{\circ} \mathrm{C}$ for IP55 and $+40^{\circ} \mathrm{C}$ in FS8 (IP20), an installation altitude of up to 1000 m , and a switching frequency of up to 8 kHz .

Frame size	Minimum clearance (1)
FS2, .., FS7	$\geqq 15 \mathrm{~mm}(\geqq 0.59$ inch $)$
FS8	$\geqq 50 \mathrm{~mm}(\geqq 1.97$ inch $)$

Figure 36:Minimum required clearance (1) in front of the variable frequency drive when installed in an enclosure (control panel)

[^2]When variable frequency drives with internal fans are installed vertically over each other, an air baffle must be placed between the devices. Failure to do so may expose the device on top to a thermal overload caused by the guided air flow (device fan).

Figure 37:Deflector due to increased circulation caused by device fan

Figure 38:Air circulation in frame size FS8
There must be enough clearance above and in front of the control panel in order to ensure that there will be adequate cooling and space for any required maintenance work. The required volume of cooling air [1] and the required cooling air temperature must ensure that the variable frequency drive's maximum permissible ambient temperature will not be exceeded.

It must be possible for the hot exhaust air [2] to be channeled away unobstructed. Residual heat may cause the variable frequency drive's maximum permissible ambient temperature to be exceeded.

The heat dissipation of the variable frequency drive and of the accessories in the power branch (mains choke, motor choke, sine filter) will vary significantly depending on the load, the output frequency, and the carrier frequency being used.
> $\longrightarrow \rightarrow$ Section 6.2, „Specific rated operational data", page147 lists the variable frequency drives' heat dissipation at the rated operational current.

The following formula provides a good reference value for estimating heat dissipation at target conditions, and can be used to size cooling and ventilation equipment for electrical rooms:

$$
P_{\text {Dissipated }}[k W]=P_{\text {Motor }}[k W] \times 0.025
$$

3.3.3 Fixing

All VSA variable frequency drive frame sizes can be mounted with screws. Moreover, frame sizes FS2 to FS3 with an IP20 degree of protection can be mounted on a mounting rail as well.
$\longrightarrow \quad$ Install the VSA variable frequency drive only on a nonflammable mounting base (e.g., on a metal plate).
$\longrightarrow \begin{aligned} & \text { Dimension and weight specifications for the VSA variable } \\ & \text { frequency drive can be found in the } \\ & \rightarrow \text { Section 6.3, "Dimensions", page157. }\end{aligned}$

3.3.3.1 Fixing with screws

Use screws with a washer and split washer with the
permissible tightening torque in order to protect the enclosure
and safely and reliably mount the device.

Figure 39:Mounting dimensions

- First fit the screws at the specified positions, mount the variable frequency drive and then fully tighten all screws.

Table 6: Installation dimensions, screws, tightening torques

Frame size	Degree of protection		a1		b1		Screw		Tightening torque	
FS	IP	NEMA	mm	Occur in	mm	Occur in	Quantity	Size	N/m	lb -in
FS2	IP20	NEMA 0	75	2.95	215	8.46	4	M4	1	8.85
FS2	IP66	NEMA 4X	176	6.93	200	7.87	4	M4	1.2-1.5	10.62-13.27
FS3	IP20	NEMA 0	100	3.94	255	10.04	4	M4	1	8.85
FS3	IP66	NEMA 4X	198	7.78	252	9.9	4	M4	1.2-1.5	10.62-13.27
FS4	IP55	NEMA 12	110	4.33	428	16.85	4	M8	4	35.4
FS5	IP55	NEMA 12	175	6.89	515	20.28	4	M8	15	132.76
FS6	IP55	NEMA 12	200	7.87	840	33.07	4	M10	20	177
FS7	IP55	NEMA 12	200	7.87	1255	44.41	4	M10	20	177
FS8	IP20	NEMA 0	420	16.54	942	37.09	4	M12	57	504.5

$1 \mathrm{in}=1^{\prime \prime}=25.4 \mathrm{~mm} ; 1 \mathrm{~mm}=0.0394 \mathrm{in}$

3.3.3.2 Fixing on a mounting rail

As an alternative to screw fixing, VSA variable frequency drives (sizes FS2 and FS3) and a degree of protection of IP20 can also be mounted on a mounting rail as per IEC/EN 60715.

If you use EMC mounting adapters (DX-EMC-MNT-...), use a tall mounting rail $(15 \mathrm{~mm})$ preferably.

Figure 40:Mounting rail conforming with IEC/EN 60715

- To do this, place the variable frequency drive on the mounting rail from above [1] and press it down until it snaps into place [2].

1

Figure 41 :Fixing on mounting rails

Dismantling from mounting rails

- To remove the device, push down [2] on the clip being held by a spring force [1]. There is a marked recess at the bottom edge of the device that is intended for this purpose.
A flat-bladed screwdriver (blade width 5 mm) is recommended for pushing down the clip.

Figure 42:Dismantling from mounting rails

- Now pull the lower edge away from the mounting surface (towards you) [3] before lifting the variable frequency drive off the mounting rail.

3.3.4 Control panel installation

If you install the VSA variable frequency drive in a control panel, make sure that the cabinet is installed in such a way that it is stable. The best option is to install it with the back panel lying against a wall. Moreover, the top of the cabinet should be fastened to the wall and the two front corners should be fastened to the floor. If the cabinet is set up in a freestanding configuration, all four corners must be fastened to the floor.

Figure 43:Stable control panel setup
\longrightarrow Heavy accessories such as motor chokes and sine filters should always be installed on the control panel's base plate.

3.4 IP66/NEMA4X degree of protection

IP66 VSA variable frequency drives are available in two versions:

- VSA...-A66C: Activation via control signal terminals
- VSA...-A6SC: Controlled with controls on the front and/or control signal terminals

Figure 44:IP66 variants
The units must be mounted, with four screws and in a vertical position, on a wall or panel that is made of nonflammable material and is stable enough to hold the variable frequency drive's weight.

Figure 45:Openings for fixing screws

On the VSA...-A6SC version, the main disconnect switch can be locked in the OFF position with a standard padlock.

Figure 46:VSA...-A6SC with padlock

- Push on the center of the switch in order to open the opening for the padlock.

3.5 EMC installation

The responsibility to comply with the legally stipulated limit values and thus the provision of electromagnetic compatibility is the responsibility of the end user or system operator. This operator must also take measures to minimize or remove emission in the environment concerned. He must also utilize means to increase the interference immunity of the devices of the system.

\rightarrow
In a magnet system (PDS) with frequency inverters, you should take measures for electromagnetic compatibility (EMC) while doing your engineering, since changes or improvements to the installation site, which are required in the installation or while mounting, are normally associated with additional higher costs as well.

The technology and system of a variable frequency drive cause the flow of high frequency leakage current during operation. Because of this, all earthing elements must be low-impedance elements connected in such a way as to establish an electrical contact across a large surface area.

With leakage currents greater than 3.5 mA , in accordance with VDE 0160 or EN 60335, either

- the cross-sectional area of the protective conductor must be $\geqq 10 \mathrm{~mm}^{2}$,
- The protective conductor must be open-circuit monitored, or
- the second protective conductor must be fitted.

For an EMC-compliant installation, we recommend the following measures:

- Installation of the variable frequency drive in a metallically conductive housing with a good connection to ground,
- screened motor cables (short cables).

Ground all conductive components and housings in a drive system using as short a line as possible with the greatest possible cross-section (Cu-braid).

3.5.1 EMC compliance in the control panel

In order to have an installation that meets EMC requirements, make sure to connect all the metallic parts in the devices and in the control panel to each other across a large area and in a way that will make it possible to conduct high frequencies. Mounting plates and control panel doors should be connected to the panel by means of short drain wires with an electrical contact established across a large surface area.
\longrightarrow
Do not make connections to painted surfaces (electrolytic oxidation, yellow chromated).

Install the variable frequency drive as directly as possible (without spacers) on a metal plate (mounting plate).
\longrightarrow Route mains and motor cables in the control panel as close to the ground potential as possible. This is because free moving cables act as antennas.

If routed in parallel, cables carrying high frequencies (e.g., screened motor cables) and clean cables (e.g., mains supply cable, control and signal cables) should be installed at a distance of at least 100 mm from each other in order to avoid electromagnetic interference. You should also use separate cable entries if there is a great difference in voltage potentials. If control cables and power cables need to cross, they should always do so at a right angle $\left(90^{\circ}\right)$.

Figure 47:Cable routing
$\longrightarrow \begin{aligned} & \text { Do not route the control and signal cables (2) in the same } \\ & \text { conduit as the power cables (1). }\end{aligned}$
Analog signal cables (measured values, setpoints, and correction values) must be routed inside screened conduit.

Figure 48:Separate routing
(1) Power cable: mains voltage, motor connection
(2) Control and signal lines, fieldbus connections

3.5.2 Earthing

The protective earth (PE) in the control panel should be connected from the mains supply to a central earth point (mounting plate, system earth). The PE conductor's cross-sectional area must be at least as large as that of the incoming mains supply cable.
Every variable frequency drive must be individually connected to the power supply system's protective earth directly at the location of installation (system earthing). This protective earth must not pass through any other devices.

All protective conductors should be routed in a star topology starting from the central earth point, and all of the magnet system's conductive components (e.g. variable frequency drive, sine filter) should be connected.
The earth-fault loop impedance must comply with all locally applicable industrial safety regulations. In order to meet UL requirements, UL-listed ring cable lugs must be used for all earth wiring connections.
\longrightarrow Avoid ground loops when installing multiple variable frequency drives in one control panel. Make sure that all metallic devices that are to be grounded have a broad area connection with the mounting plate.

3.5.2.1 Protective earth

This refers to the legally required protective earth for a variable frequency drive. An earthing terminal on the variable frequency drive, or the system earth, must be connected to a neighboring steel element in the building (beam, ceiling joist), an earth electrode in the ground, or a mains earth bus. The earth points must meet the requirements set forth by the applicable national and local industrial safety regulations and/or regulations for electrical systems.

3.5.2.2 Motor earthing

The motor earth must be connected to one of the earthing terminals on the variable frequency drive and to a neighboring steel element in the building (beam, ceiling joist), an earth electrode in the ground, or a mains earth bus.

3.5.2.3 Earth-fault protection

A fault current to earth can be produced by variable frequency drives due to their system characteristics. VSA series variable frequency drives have been designed in such a way that the smallest possible fault current will be produced in compliance with standards applicable worldwide. In the case of devices powered with a three-phase supply (VSA 3...), this fault current must be monitored by a residual current device (RCD, type B).

3.5.3 Internal filters (EMC and VAR screws)

3.5.3.1 EMC screw

FS2 and FS3 VSA variable frequency drives with an IP20 degree of protection feature two screws on the left side that are labeled EMC and VAR.

Figure 49:EMC and VAR screw

NOTICE

The screw labeled EMC must not be manipulated as long as the variable frequency drive is connected to the mains.

\rightarrow
The EMC screw galvanically connects the EMC filter's mains-side capacitors to earth. The screw must be screwed in all the way to the stop (factory setting) in order for the variable frequency drive to comply with EMC standards.

Due to their system characteristics, variable frequency drives with an internal EMC filter will produce a larger fault current to earth than devices without a filter. For applications in which this larger leakage current may cause malfunction messages or disconnections (residual current device), the EMC filter's internal protective earth can be disconnected (remove the EMC screw to do this).
Local EMC regulations must be taken into account when doing so. If necessary, a specific low-leakage-current EMC filter (DX-EMC...-L) must be connected upstream.
In connections to isolated power sources (IT networks), the EMC and VAR screw should be removed. The earth fault monitors required for IT networks must be suitable for operation with power electronic devices (IEC 61557-8).

3.5.4 VAR screw

VSA series variable frequency drives are equipped with an overvoltage filter for the input supply voltage that is designed to protect the devices from noise pulses in the mains voltage. Pulse spikes are typically caused by lightning strikes or by switching operations in other high-power devices on the same supply.

If high potential tests are performed on a system, these overvoltage protection components may cause the system to fail the test. In order to make it possible to perform this type of hipot tests, the overvoltage protection components can be disconnected by removing the VAR screw. The screw must be screwed back in after the high potential tests are performed and the test must then be repeated. The system must then fail the test, indicating that the overvoltage protection components have been reconnected.

NOTICE

The screw labeled VAR (\rightarrow Figure 49, page 86) must not be manipulated as long as the variable frequency drive is connected to the mains.

3.5.5 Screen earth kit

Cables that are not screened work like antennas (sending, receiving).

> For a proper EMC connection, cables emitting interference (e.g. motor cables) and susceptible cables (analog signal and measurement values) must be screened and laid separately from each other.

The effectiveness of the cable screen depends on a good screen connection and a low screen impedance.

Use only shields with tinned or nickel-plated copper braiding.
Braided steel shields are unsuitable.

Control and signal lines (analog, digital) should always be grounded on one end, in the immediate vicinity of the supply voltage source (PES).

3.5.6 EMC cable brackets

DX-EMC-MNT-... cable brackets can be used to route and secure cables in the connection area of an FS2 or FS3 variable frequency drive with an IP20 degree of protection. These cable brackets are mounted on the variable frequency drive's mains connection side (DX-EMC-MNT-...N) and motor side (DX-EMC-MNT-...M) using the corresponding mounting holes, and are then connected to the drive's earthing connection.
The cable brackets' integrated hole pattern (M4 screw tread) makes it possible to secure the cables being connected and relieve any strain on them by using the corresponding gland plates. It also makes it possible to have a 360° EMC connection (PES) in the case of screened cables.

These cable brackets are made of galvanized sheet steel.

Figure 50:DX-EMC-MNT-...N (left), net and DX-EMC-MNT-...M (right), motor, cable brackets
$\longrightarrow \begin{aligned} & \text { For more information and technical data on DX-EMC-MNT-... } \\ & \text { EMC cable brackets, please refer to instructional leaflet } \\ & \text { ILO40010ZU. }\end{aligned}$
\longrightarrow DX-EMC-MNT-... EMC cable brackets are sold as individual units. There are different brackets for each VSA variable frequency drive frame size (FS2 and FS3). The gland plates and their fixing screws are included in the equipment supplied with the cable brackets.

Cable bracket	Frame size VSA	Gland plates Quantity/designation
DX-EMC-MNT-2N	FS2	1/mains connection
DX-EMC-MNT-2M	FS2	3/control cables, motor connection, external braking resistance
DX-EMC-MNT-3N	FS3	1/mains connection
DX-EMC-MNT-3M	FS3	3/control cables, motor connection, external braking resistance

3.5.7 General installation diagram

Figure 51:EMC installation
(1) Mains connection: Supply voltage, central earthing connection for control panel and machine
(2) External radio interference suppression filter: Optional DX-EMC... radio interference suppression filter for longer motor cables or use in a different EMC environment
(3) Control connection: Connection for the digital and analog control cables, STO function, and communication via RJ45 plug-in connection
(4) Motor connection: Connection (PES) between the screened motor cable and the motor's terminal box, made according to EMC requirements, with metal cable gland or with gland plate in the terminal box.
(5) Cable routing: Power cables (A) and control cables (B) spatially routed separately from each other. If different potential levels need to cross, they should do so at a right angle as far as possible.
(6) Cable routing: Do not route power cables and control cables parallel to each other in a single cable duct. If they need to be routed in parallel, they should be in separate metal cable ducts (in order to meet EMC requirements).

3.6 Electrical Installation

3.6 Electrical Installation

CAUTION

Carry out wiring work only after the variable frequency drive has been correctly mounted and secured.

DANGER

Electric shock hazard - risk of injuries!
Carry out wiring work only if the unit is de-energized.

NOTICE

Fire hazard!
Only use cables, circuit-breakers, and contactors that feature the indicated permissible nominal current value.

NOTICE

On VSA variable frequency drives, earth leakage currents can be greater than $3.5 \mathrm{~mA}(\mathrm{AC})$.
Accordingly, as per IEC/EN 61800-5-1, an additional protective conductor must be connected or the protective conductor's cross-sectional area must be at least $10 \mathrm{~mm}^{2}$.

DANGER

The components in the variable frequency drive's power section remain energized up to five (5) minutes after the supply voltage has been switched off (intermediate circuit capacitor discharging time).

Pay attention to hazard warnings!

[^3]
3.6.1 Power section connections

The connection to the power section is normally made via the connection terminals:

- L1/L, L2/N, L3, PE for the mains-side supply voltage. The phase sequence does not matter.
- $\quad D C+$ (or +), $D C-$ (or-), PE for DC link coupling or if the device is being supplied with DC voltage
- $\quad \mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{PE}$ for the input wiring to the motor
- BR, DC+ (or +), PE for an external braking resistance
- $\mathrm{DC}+$ (or +) or DC- (or-), PE for connecting all-pole sine filters

Figure 52:Connection in power section (schematic)
The number and the arrangement of the connection terminals used depend on the variable frequency drive's frame size and model.

NOTICE

The variable frequency drive must always be connected with ground potential via a grounding conductor (PE).

3.6.1.1 Connection terminals on frame sizes FS2 and FS3 with IP20

Table 7: Connection terminals (FS2, FS3)

\longrightarrow
DC+ and DC- for DC link coupling or if the device is being supplied with DC voltage.
To do this, the terminal screw cover needs to be knocked out.

3.6.1.2 Connection for frame sizes FS4 to FS7 with IP55

On enclosures with an IP55 degree of protection (frame sizes FS4 to FS7), the connection area will be located behind the lower enclosure cover.

Sizes FS4 and FS5

Figure 53:Removing the cover
Release the latches by turning them counterclockwise (90 degrees) so that they are in a vertical position [1] and lift the cover off towards you [2].

Sizes FS6 and FS7

Figure 54:Removing the cover
Unscrew the two screws at the bottom [1], lift the cover from the bottom [2], and then remove it towards you

The upper edge of this cover is inserted into the upper enclosure cover from below.

The connection cables need to be brought in from below. To do this on these frame sizes (FS4 to FS7), the cover at the bottom (above the device fan) needs to be removed.

Figure 55:Remove the blanking plate
Unscrew the screws (six/eight) [1] and remove the blanking plate [2].
Table 8: Connection terminals (FS4, FS5)

Description		
Connection with three-phase	internal or external	Connection for three-phase motors
supply voltage:	braking resistance	(motor voltage $=$ supply voltage)
- VSA 32... $200-240 \mathrm{~V})$	(RB, optional)	
- VSA $34 . \ldots(380-480 \mathrm{~V})$		
- VSA 35... $500-600 \mathrm{~V})$		

Figure 56:Connection terminals for FS4 and FS5
PE earthing connection with ring terminals on the right side.

\longrightarrow Terminals +DC and -DC have the same function as terminals DC+ and DC-.

Table 9: Terminal bolt (FS6, FS7)

Description		
Connection with three-phase	external braking	Connection for three-phase motors
supply voltage:	resistance (RB, optional)	(motor voltage = supply voltage)
- VSA $32 \ldots(200-240 \mathrm{~V})$		
- VSA $34 \ldots(380-480 \mathrm{~V})$		
- VSA $35 \ldots(500-600 \mathrm{~V})$		

Figure 57:Terminal bolt for FS6 and FS7
The PE earthing connection is made with ring terminals and the bolts on the left and right sides of the enclosure.

The terminal bolts for an external brake resistor are located under the cover marked with + and BR.
\longrightarrow Stud terminal + has the same function as terminal DC+.
$\longrightarrow \quad \begin{aligned} & \text { If the device is installed in a control panel, the lower blanking } \\ & \text { plate and the front enclosure cover must not be installed. }\end{aligned}$ Without the cover, the VSA variable frequency drive will have an IP40 degree of protection.

3.6 Electrical Installation

3.6.1.3 Terminal bolts on frame size FS8 (IP20)

On FS8 VSA variable frequency drives, the connection area inside the power section will be covered by a blanking plate at the bottom of the enclosure. In order to open it, you will need to unscrew six screws [1].

Figure 58:Remove the blanking plate
Table 10: Terminal bolt (FS8)

Description		
Connection with three-phase supply voltage: \bullet VSA $34 \ldots(380-480 \mathrm{~V})$	external braking resistance $\left(R_{B}\right.$, optional)	Connection for three-phase motors (motor voltage $=$ supply voltage)

Figure 59:Terminal bolt for FS8
The PE earthing connection is made with ring terminals and the bolts on the right side.
\longrightarrow Stud terminal + has the same function as terminal DC+.

3.6.1.4 Connection terminals on frame sizes FS2 and FS3 with IP66

On FS2 and FS3 frame sizes with an IP66 degree of protection, the connection area is located behind the lower enclosure cover. To open the cover, release the two latches by turning them counterclockwise (90 degrees) so that they are in a vertical position [1].

Once the latches are released, you can lift the cover off towards you [2].

Figure 60:Remove enclosure cover (IP66)

Table 11: Connection terminals (FS2, FS3)

\longrightarrow Terminal + has the same function as terminal DC+.

3.6 Electrical Installation

3.6.1.5 Stripping lengths and tightening torques

Mains

Motor

DC link, Brake Resistor

Figure 61:connection cables
Mains = Electrical supply system (mains voltage),
Motor = Motor connection,
DC-Link = internal DC link,
Brake Resistor = Braking resistance
Table 12: Stripping lengths in the power section

Frame size (degree of protection)	A1 mm (in) mm (in)	Tightening torque Nm (lb-in)
FS2 (IP20)	8 (0.3)	1 (8.85)
FS3 (IP20)	8 (0.3)	1 (8.85)
FS2 (IP66)	10 (0.39)	1.5 (15)
FS3 (IP66)	10 (0.39)	1.5 (15)
FS4	15 , space unit $=$ ringcable ferrule	4 (35.4)
FS5	15 , space unit $=$ ringcable ferrule	15 (98.2)
FS6	Ring-cable ferrule	20 (177)
FS7	Ring-cable ferrule	20 (177)
FS8	Ring-cable ferrule	$57(504,49)$

Table 13: Openings (FS2, FS3)

Frame size	Control section	Power part	Metric gland for hole size
FS2	$\begin{aligned} & 2 \times 21 \mathrm{~mm} \\ & 1 \times 25.5 \mathrm{~mm} \end{aligned}$	$3 \times 21 \mathrm{~mm}$	M20 with 21 mm M25 with 25.5 mm
FS3	$\begin{aligned} & 2 \times 21 \mathrm{~mm} \\ & 1 \times 25.5 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 1 \times 21 \mathrm{~mm} \\ & 1 \times 25.5 \mathrm{~mm} \text { (open) } \end{aligned}$	M20 with 21 mm M25 with 25.5 mm

3.6.1.6 Connecting the motor cable

The screened cables between the variable frequency drive and the motor should be as short as possible.

Figure 62:Connection on motor side

- Connect the screening, on both sides and across a large area (360° overlap), to the protective earth (PE) Θ). The power screening's protective earth (PES) connection should be in the immediate proximity of the variable frequency drive.and directly on the motor terminal box.
- Prevent the screen earth kit from becoming unbraided, i.e. by pushing the separated plastic covering over the end of the shielding or with a rubber grommet on the end of the shielding. Terminate the cable screen across a large area at the end (PES).
Alternatively, you can twist the screen braid and connect it to the protective earth with a cable lug. In order to prevent EMC interference, this twisted screen connection should be as short as possible (recommended value for the twisted cable screen: $b \geqq 1 / 5 a$).

Figure 63:Screened connection cable in motor circuit

Screened, four-wire cable is recommended for the motor cables. The green-yellow line of this cable connects the protective ground connections from the motor and the variable frequency drive and therefore minimizes the equalizing current loads on the screen braid.

The following figure shows the construction of a four-wire, screened motor line (recommended specifications).

Figure 64:Four-core screened motor supply cable
(1) Cu shield braid
(2) PVC outer casing
(3) Drain wire (copper strands)
(4) PVC core insulation, $3 x$ black, $1 x$ green-yellow
(5) Textile and PVC fillers

If there are additional subassemblies in a motor feeder (such as motor contactors, overload relays, motor chokes, sine filters or terminals), the shielding of the motor cable can be interrupted close to these subassemblies and connected to the mounting plate (PES) with a large area connection. Free or non-shielded connection cables should not be any longer than about 300 mm .

3.6.1.7 Cable glands on IP55 and IP66

In the case of applications requiring for a variable frequency drive to be installed inside buildings or systems but outside a control panel, cable glands can be used with VSA variable frequency drives with an IP55 or IP66 degree of protection in order to establish an optimal connection.

Figure 65:Openings with cable glands (IP66)
(1) Mains connection (supply voltage)
(2) Control and signal cables
(3) Motor connection (screened cable with metal cable gland)

The lower metal section already comes with openings for the cable glands to the power section.

Figure 66:Openings for cable glands with IP66 degree of protection

3 Installation
3.6 Electrical Installation

Table 14: Openings for cable glands (FS2, FS3)

Frame size	Control section	Power part	Metric gland for hole size
FS2	$\begin{aligned} & 2 \times 21 \mathrm{~mm} \\ & 1 \times 25.5 \mathrm{~mm} \end{aligned}$	$3 \times 21 \mathrm{~mm}$	M20 with 21 mm M25 with 25.5 mm
FS3	$\begin{aligned} & 2 \times 21 \mathrm{~mm} \\ & 1 \times 25.5 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & 1 \times 21 \mathrm{~mm} \\ & 1 \times 25.5 \mathrm{~mm} \text { (open) } \end{aligned}$	M20 with 21 mm M25 with 25.5 mm

$\longrightarrow \begin{aligned} & \text { Make sure that the cable glands have at least an IP66 degree of } \\ & \text { protection. }\end{aligned}$

The EMC cable gland must be earthed properly - e.g., with a metal lock nut that is then connected to the PE terminal.

Figure 67:Grounding the EMC cable gland (IP66)

Figure 68:Example: diagram of EMC gland assembly

In devices with an IP55 degree of protection (frame sizes FS4 to FS7), the blanking plates (\rightarrow Figure 72) have three locating points for individual opening diameters. In order to have an installation that meets EMC requirements, the metal stud on this blanking plate must be connected to the enclosure's PE/earthing connection.

Figure 69:Blanking plate (FS6, FS7) with locating points and earthing stud

On frame sizes FS4 and FS5, the equipment supplied includes a second blanking plate with three openings in addition to the solid blanking plate that comes already installed.

Figure 70:Blanking plate with openings and earthing stud (FS4, FS5)
Table 15: Openings (FS4, FS5)

Frame size	$\begin{aligned} & \hline \text { D41 } \\ & \mathrm{mm}(\mathrm{in}) \end{aligned}$	$\begin{aligned} & \hline \text { D42 } \\ & \mathrm{mm} \text { (in) } \end{aligned}$	$\begin{aligned} & \hline \text { D43 } \\ & \mathrm{mm}(\mathrm{in}) \end{aligned}$	$\begin{aligned} & \text { I } \\ & \mathrm{mm}(\mathrm{in}) \end{aligned}$	\varnothing
FS4	$\begin{aligned} & \text { 40.5(1.59) } \\ & \text { M40 } \end{aligned}$	$\begin{aligned} & 25.5(1) \\ & \text { M25 } \end{aligned}$	$\begin{aligned} & \hline 40.5(1.59) \\ & \text { M40 } \end{aligned}$	10 (0.35)	M4
FS5	$\begin{aligned} & 50.5(1.99) \\ & \text { M50 } \end{aligned}$	$\begin{aligned} & 25.5(1) \\ & \text { M25 } \end{aligned}$	$\begin{aligned} & 50.5(1.99) \\ & \text { M50 } \end{aligned}$	18 (0.71)	M6

3.6.2 Connection on control section

The connection to the control section is made using the plug-in connection terminals:

- Terminals 1, 5, 7, 9: for the internal power supply,
- Terminals 2, 3, 4, 6, 10: for digital and analog input signals,
- Terminals 8, 11: for a digital or analog output signal,
- Terminals $14,15,16,17,18$: for dry relay outputs
- Terminals 12, 13: for the STO inputs

The 13 -terminal and 5 -terminal strips have a plug-in design.
On devices with an IP20 degree of protection (FS2, FS3, FS8), the control signal terminals are mounted on the front; on devices with an IP55 (FS4 to FS7) or IP66 degree of protection, they are mounted under the enclosure cover.

Figure 71:Plug-in control signal terminal designations

ESD measures

Discharge yourself on a grounded surface before touching the control signal terminals and the circuit board to prevent damage through electrostatic discharge.

3.6.2.1 Terminal capacity

The connection terminals' layout depends on the size of the power section. The cross-sections to be used in the connections and the tightening torques for screws are listed in the following.

Table 16: Control signal terminal dimensions

3.6.2.2 Connection data and functions

The functions that are set in the ex-factory and the electrical connection data of the control signal terminals are listed in the following table.

Table 17: Factory-set functions of the control terminals

Terminal		Signal	Description	Default settings
1	+24 V	Control voltage for DI1 - DI5, output (+24 V)	Maximum load 100 mA , Reference potential 0 V	(= Input for external control voltage, +24 VDC, reference potential at terminal 7 or 9)
2	DI1	Digital input 1	$8-+30 \mathrm{~V}$ (High, $\left.\mathrm{R}_{\mathrm{i}}>6 \mathrm{k} \Omega\right)$	FWD (clockwise rotating field enable)
3	DI2	Digital Input 2	$8-+30 \mathrm{~V}$ (High, $\left.\mathrm{R}_{\mathrm{i}}>6 \mathrm{k} \Omega\right)$	REV (anticlockwise rotating field enable)
4	DI3	Digital Input 3	$8-+30 \mathrm{~V}$ (High, $\left.\mathrm{R}_{\mathrm{i}}>6 \mathrm{k} \Omega\right)$	Select AI1 REF/f-Fix (used to change the setpoint source from analog input 1 to fixed frequency)
5	+10 V	Reference voltage, Output (+10 V)	Maximum load 10 mA Reference potential 0 V	-
6	$\begin{aligned} & \mathrm{Al} 1 \\ & \mathrm{DI} 4 \end{aligned}$	Analog input 1 Digital Input 4	- Analog: $0-+10 \mathrm{~V}\left(\mathrm{R}_{\mathrm{i}}>72 \mathrm{k} \Omega\right)$ $0 / 4-20 \mathrm{~mA}\left(\mathrm{R}_{\mathrm{B}}=500 \Omega\right)$ Can be switched with parameter P2-30 - digital: 8-30 V (high)	Select f-Fix Bit0 (used to select the fixed frequency setpoints for Bit0: f-Fix $=5 \mathrm{~Hz}$ (P2-01))
7	0 V	Reference potential	$0 \mathrm{~V}=$ connection terminal 9	-
8	$\begin{aligned} & \hline \text { A01 } \\ & \text { D01 } \end{aligned}$	Analog output 1 Digital output 1	- analog: $0-+10 \mathrm{~V}$ maximum 20 mA can be switched with parameter P2-11 - digital: $0-+24 \mathrm{~V}$	Output frequency f-Out (P2-11 = 8, AD01 function \& mode)
9	0 V	Reference potential	OV = connection terminal 7	-
10	$\begin{aligned} & \mathrm{D} 15 \\ & \mathrm{~A} 12 \end{aligned}$	Digital Input 5 Analog input 2	- digital: 8-30 V (high) - Analog: $0-+10 \mathrm{~V}\left(\mathrm{R}_{\mathrm{i}}>72 \mathrm{k} \Omega\right)$ $0 / 4-20 \mathrm{~mA}\left(\mathrm{R}_{\mathrm{B}}=500 \Omega\right)$ Can be switched with parameter P2-33	Select f-Fix Bit0
11	$\begin{aligned} & \hline \text { A02 } \\ & \mathrm{D} 02 \end{aligned}$	Analog output 2 Digital output 2	- analog: $0-+10 \mathrm{~V}$ maximum 20 mA can be switched with parameter P2-13 - digital: $0-+24 \mathrm{~V}$	Output current A-Out (P2-13 = 9, AD02 function \& mode)
12	STO+	Safe Torque Off +	Enable $=+24 \mathrm{~V}$	\rightarrow Section 2.10, „STO function", page59
13	STO-	Safe Torque Off -	Enable $=0 \mathrm{~V}$	
14	K11	Relay 1, changeover contact	Maximum switching load: $250 \mathrm{VAC} / 6 \mathrm{~A}$ or 30 V DC/5 A	(common connection for N / C and N / O)
15	K14	Relay 1, N/0 (changeover contact)	Maximum switching load:	Closed = No fault message
16	K12	Relay 1, N/C (changeover contact)	$250 \mathrm{~V} \mathrm{AC/6} \mathrm{~A} \mathrm{or} 30 \mathrm{~V}$ DC/5 A	Closed = No 24 V control voltage or fault message (Error)
17	K23	Relay 2, N/O contact	Maximum switching load:	Closed = RUN operating signal
18	K24	Relay 2, N/O contact	250 V AC/6 A or 30 V DC/5 A	

1) Configurable function: Manual MNO4020006Z-EN describes the functions and modes for the configurable control signal terminals.

3.6.2.3 STO terminals

$\begin{array}{lllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13\end{array}$
(00000(0)OD(0)

Figure 72:STO control signal terminals (direct enable)

If a control voltage (24 VDC) is not connected to control signal terminals 12 and 13 , the control section and the inverter will remain disabled.
",

3.6.2.4 Connection example

The control cables should be screened and twisted. The screening is applied on one side in the proximity of the variable frequency drive (PES).

Figure 73:Simple connection example
$\longrightarrow \quad \begin{aligned} & \text { Prevent the shielding from becoming unbraided, i.e. by pushing } \\ & \text { the separated plastic covering over the end of the shielding or }\end{aligned}$ with a rubber grommet on the end of the shielding.

Figure 74: Preventing the screening from becoming unbraided
Alternatively, in addition to the broad area cable clip, you can also twist the shielding braid at the end and connect to the protective ground with a cable lug. To prevent EMC disturbance, this twisted shielding connection should be made as short as possible.

Prevent the screen from becoming unbraided at the other end of the control cable, e.g. by using a rubber grommet. The shield braid must not make any connection with the protective ground here because this would cause problems with an interference loop.

3.6 Electrical Installation

3.6.2.5 Digital Input Signals

Control signal terminals $2,3,4,6$ and 10 all have the same function and mode of operation as digital inputs (DI1 to DI5).
A logic level of +24 V (positive logic) is used:

- $8-+30 \mathrm{~V}=$ High (logic "1")
- $0-+4 \vee=$ Low (logic "0")
- Input current: ~ 4 mA
- Signal common $0 \vee$ (control signal terminal 7 or 9)

The internal control voltage from control signal terminal 1 (+24 V) or an external voltage source (+24 V) can be used for this.
By default (with the unit as supplied), the control signal terminals for the digital input signals will be assigned as follows:

- Control signal terminal 2 as digital input 1 (DI1) = FWD (clockwise rotating field enable signal)
- Control signal terminal 3 as digital input 2 (DI2) $=$ REV (counterclockwise rotating field enable signal)
- Control signal terminal 4 as digital input 3 (DI3) = Used to switch from f-Set to fixed frequency (f-Fix1, f-Fix2)
- Control signal terminal 6 as analog input 1 (Al1) = f-Set analog setpoint
- Control signal terminal 10 as digital input 5 (DI5), can be switched between f-Fix1 and f-Fix2.
\rightarrow
The setting (digital/analog) for terminals 6 and 10 will be configured automatically based on the value set for P1-13.

Figure 75:Control signal terminals (digital / analog)

3.6.2.6 Analog input signals

Depending on how parameters P1-12 and P1-13 are set, control signal terminals 6 (All) and 10 (Al) can be connected to analog signals
$(\rightarrow$ Figure 78):

- $0-+10 \mathrm{~V}$
- 0-10 V with scaling and operating direction change
- 0-20 mA
- 4-20 mA or 20-4 mA with open-circuit monitoring (<3 mA)
\rightarrow
Control signal terminals 7 and 9 are the common $0 \vee$ reference potential for all analog and digital signals.

3.6.2.7 Analog output signal

Analog signals are available at control signal terminals 8 and $11(\rightarrow$ Figure 78). These outputs can handle a maximum load of 20 mA . The output signals can be selected using parameters P2-11 (AO1) and P2-13 (AO2). Parameters P2-12 (AO1) and P2-14 (AO2) are used to configure the formats for the analog inputs:

Parameter value	Output signal
0	$0-10 \mathrm{~V}$
1	$10-0 \mathrm{~V}$ 2
3 4	$0-20 \mathrm{~mA}$ 5

Figure 76: Analog output (AO) (connecting example)

$$
\longrightarrow \quad \begin{aligned}
& \text { Control signal terminals } 7 \text { and } 9 \text { are the common } 0 \mathrm{~V} \text { reference } \\
& \text { potential for all analog and digital signals. }
\end{aligned}
$$

By default, the speed/frequency (AO1) and the output current (AO2) will be displayed.

3.6 Electrical Installation

3.6.2.8 Digital output (Transistor)

Control signal terminals 8 and $11(\rightarrow$ Figure 78) are configured as analog outputs (AO) by default. Parameters P2-11 and P2-13 can be used to configure them as digital outputs (DO) instead.
Transistor outputs DO1 (terminal 8) and DO2 (terminal 11) switch the internal device control voltage (+24 V) as a digital signal. The maximum permissible load current is 20 mA .

Figure 77:Connection example (interposing relay with free-wheeling diode: ETS4-VS3; article no. 083094)
$\longrightarrow \quad \begin{aligned} & \text { Control signal terminals } 7 \text { and } 9 \text { are the common } 0 \mathrm{~V} \text { reference } \\ & \text { potential for all analog and digital output signals. }\end{aligned}$ potential for all analog and digital output signals.

3.6.2.9 Relay output

VSA variable frequency drives feature two relays with dry contacts.
Relay K1:
Control terminals 14 (changeover contact), 15 (N/O), and 16 (N/C)
Default setting: 1 = Ready for operation/fault (Error)
Relay K2:
Control signal terminals 17 and 18 (N/O)
Default setting: $0=$ Drive running (RUN)
The relay function can be configured using parameters P2-15 and P2-18.
The electrical connection specifications for control signal terminals or relay contacts are:

- 250 V AC, max. 6 A
- 30 V DC, max. 5 A

We recommend connecting any connected loads as follows:

Figure 78:Connection examples with suppressor circuit

3.6.2.10 External control voltage

An external power supply unit can be used to supply the VSA variable frequency drive's control section with 24 V DC.

VSA	External control voltage
Terminal 1	+24 V
Terminal 7,9	0 V

$\longrightarrow \begin{aligned} & \text { The external control voltage (}+24 \mathrm{~V} \text {) should be able to handle a } \\ & \text { load of at least } 100 \mathrm{~mA} \text {. This external control voltage's residual }\end{aligned}$ ripple must be smaller than $\pm 5 \%$ of $\Delta \mathrm{U}_{a} / \mathrm{U}_{\mathrm{a}}$.

If the control section is powered with an external power supply unit, the control section, the control signal terminals, and the RJ45 interface will be active.

You will be able to do the following:

- Change parameters (but not save them)
- Read readings and error registers
- Address and read parameters via the RJ45 interface, the drivesConnect parameter configuration program, field buses, and SmartWire-DT.
- Control control level functions without the power section being powered.

3 Installation

3.6 Electrical Installation

3.6.2.11 RJ 45 interface

The RJ45 interface on the VSA variable frequency drive makes it possible to connect directly to communication modules and fieldbus connections.
The internal RS485 connection handles transmissions for the OP bus, Modbus RTU, and CANopen field bus systems.

Figure 79:RJ45 interface (example: location on FS2 frame size)
$\longrightarrow \quad \begin{aligned} & \text { VSA variable frequency drives do not have an internal bus } \\ & \text { termination resistor - use EASY-NT-R if necessary. }\end{aligned}$

3.6.2.12 IP66, control signal terminals (VSA...A6SC)

On VSA variable frequency drives with an IP66 degree of protection and local controls (VSA...A6SC), the control signal terminals will be partially wired.

Figure 80:VSA ...A6SC (factory connection)
When supplied, the control signal terminals will be connected as follows:
Table 18: Configuration of the control signal terminals

Terminal	Color	Function
1	YE (yellow)	+24 V to FWD/REV selector switch
2	BU (blue)	From selector switch = FWD
3	RD (red)	From selector switch = REV
5	GY (gray)	+10 V to potentiometer
6	WH (white)	From potentiometer = f-Set
7	BK (black)	From potentiometer $=0 \mathrm{~V}$

$\longrightarrow \quad \begin{aligned} & \text { For the enable signal for operation, you will also need to install } \\ & \text { an insulated wire jumper from terminal } 1 \text { to terminal } 12 \text { (STO+) }\end{aligned}$ a and a link from terminal 13 (STO-) to terminal 9 or 7 $(\rightarrow$ Figure 71, page 104).

3 Installation
3.7 Block diagrams

3.7 Block diagrams

The following block diagrams show all the connection terminals on a VSA variable frequency drive and their functions when in their default settings.
$\longrightarrow \begin{aligned} & \text { An external } 24 \mathrm{~V} \text { power supply can be connected to control } \\ & \text { signal terminals } 1(+24 \mathrm{~V}) \text { and } 7 \text { or } 9(0 \mathrm{~V}) \text {. }\end{aligned}$

3.7.1 VSA 12...

Mains voltage ULN: single-phase, $200(-10 \%)-240(+10 \%)$ V, $50 / 60 \mathrm{~Hz}$
Motor voltage U_{2} : 3-phase, $\mathrm{U}_{2}=U_{\text {LN }} \mathrm{O}-50 / 60 \mathrm{~Hz}(\max .500 \mathrm{~Hz})$
Frame size: FS2 with IP20 degree of protection

Figure 81:Block diagram VSA 12...
(1) Relay: Safe Torque Off (STO), SIL 2 (EN 61800-5-2)
3.7 Block diagrams

3.7.2 VSA 32...-A20C, VSA 34...-A20C

Mains voltage ULN:
VSA 32...: 3-phase, 200 (-10 \%) - 240 (+10 \%) V, 50/60 Hz
VSA 34...: 3-phase, 380 (-10 \%) - 480 (+10 \%) V, 50/60 Hz
Motor voltage U_{2} : 3-phase, $\mathrm{U}_{2}=U_{\text {LN }} \mathrm{O}-50 / 60 \mathrm{~Hz}(\max .500 \mathrm{~Hz})$
Frame size: FS2 and FS3 with IP20 degree of protection

Figure 82:Block diagram for VSA $32 \ldots$, VSA $34 \ldots$, FS2 and FS3 frame sizes
(1) Relay: Safe Torque Off (STO), SIL 2 (EN 61800-5-2)

3.7.3 VSA 32...-B55C, VSA 34...-B55C, FS4 frame size

Mains voltage ULN:
VSA 32...: 3-phase, 200 (-10 \%) - 240 (+10 \%) V, 50/60 Hz
VSA 34...: 3-phase, 380 (-10 \%) - 480 (+10 \%) V, 50/60 Hz
Motor voltage U_{2} : 3-phase, $\mathrm{U}_{2}=U_{\text {LN }}, 0-50 / 60 \mathrm{~Hz}(\max .500 \mathrm{~Hz})$
Frame size: FS4 with IP55 degree of protection

Figure 83:Block diagram for VSA 32..., VSA 34..., FS4 frame size
(1) Relay: Safe Torque Off (STO), SIL 2 (EN 61800-5-2)
3.7 Block diagrams

3.7.4 VSA 32...-B55C, VSA 34...-B55C, FS5, FS6, FS7 frame sizes

Mains voltage ULN:
VSA 32...: 3-phase, 200 (-10 \%) - 240 (+10 \%) V, 50/60 Hz
VSA 34...: 3-phase, 380 (-10 \%) - 480 (+10 \%) V, 50/60 Hz
Motor voltage U_{2} : 3-phase, $\mathrm{U}_{2}=U_{\text {LN }} 0-50 / 60 \mathrm{~Hz}(\max .500 \mathrm{~Hz})$
Frame size: FS5, FS6 and FS7 with IP55 degree of protection

Figure 84:Block diagram VSA 32..., VSA $34 \ldots$
(1) Relay: Safe Torque Off (STO), SIL 2 (EN 61800-5-2)

3.7.5 VSA 34370..., VSA 34450...

Mains voltage ULN: 3-phase, 380 (-10 \%) - 480 (+10 \%) V, $50 / 60 \mathrm{~Hz}$
Motor voltage U_{2} : 3-phase, $\mathrm{U}_{2}=U_{\text {LN }}, 0-50 / 60 \mathrm{~Hz}(\max .500 \mathrm{~Hz})$
Frame size: FS8 with IP20 degree of protection

Figure 85:VSA 34... block diagram in frame size FS8
(1) Relay: Safe Torque Off (STO), SIL 2 (EN 61800-5-2)
(2) If it is not guaranteed that the system percentage impedance is greater than or equal to 1%, a mains choke must be connected. Your uk value should fall between 1 and 4%.
(3) Check the L1-L2-L3 phase sequence (rotating field direction). If the phase sequence is wrong, the $F F_{\square}-\mathcal{F}$ fault message will be displayed.
3.7 Block diagrams

3.7.6 VSA 35...-A20C

Mains voltage ULN: 3-phase, $500(-10 \%)-600(+10 \%)$ V, $50 / 60 \mathrm{~Hz}$
Motor voltage U_{2} : 3-phase, $\mathrm{U}_{2}=U_{\text {LN }}, 0-50 / 60 \mathrm{~Hz}(\max .500 \mathrm{~Hz})$
Frame size: FS2 and FS3 with IP20 degree of protection

Figure 86:Block diagram VSA 35...
(1) Relay: Safe Torque Off (STO), SIL 2 (EN 61800-5-2)
$\longrightarrow \quad \begin{aligned} & \text { VSA } 35 \ldots \text { devices do not feature an internal radio interference } \\ & \text { suppression filter. }\end{aligned}$

3.7.7 VSA 35...-B55C in FS4

Mains voltage ULN: 3-phase, $500(-10 \%)-600(+10 \%)$ V, $50 / 60 \mathrm{~Hz}$
Motor voltage U_{2} : 3-phase, $\mathrm{U}_{2}=U_{\text {LN }}, 0-50 / 60 \mathrm{~Hz}(\max .500 \mathrm{~Hz})$
Frame size: FS4 with IP55 degree of protection

Figure 87:VSA $35 \ldots$ block diagram in frame size FS4
(1) Relay: Safe Torque Off (STO), SIL 2 (EN 61800-5-2)
3.7 Block diagrams

3.7.8 VSA 35...-B55C in FS5, FS6

Mains voltage ULN: 3-phase, $500(-10 \%)-600(+10 \%)$ V, $50 / 60 \mathrm{~Hz}$
Motor voltage U_{2} : 3-phase, $U_{2}=U_{L N}, 0-50 / 60 \mathrm{~Hz}(\max .500 \mathrm{~Hz})$
Frame size: FS5 and FS6 with IP55 degree of protection

Figure 88:VSA $35 \ldots$ block diagram in frame size FS5 and FS6
(1) Relay: Safe Torque Off (STO), SIL 2 (EN 61800-5-2)

3.7.9 VSA 12...-B6SC

Mains voltage ULN: 1-phase, $200(-10 \%)-240(+10 \%)$ V, $50 / 60 \mathrm{~Hz}$
Motor voltage U_{2} : 3-phase, $\mathrm{U}_{2}=U_{\text {LN }}, 0-50 / 60 \mathrm{~Hz}(\max .500 \mathrm{~Hz})$
Frame size: FS2 with IP66 degree of protection

Figure 89:VSA 12...-B6SC block diagram
(1) Direct enable signal for STO function or relay: Safe Torque Off (STO), SIL 2 (EN 61800-5-2) as in \rightarrow Figure 81, page 115.
\longrightarrow The STO connection must be made by the user.

3.7 Block diagrams

3.7.10 VSA 32...-B6SC, VSA 34...-B6SC

Mains voltage ULN:
VSA 32...: 3-phase, 200 (-10 \%) - 240 (+10 \%) V, 50/60 Hz
VSA 34...: 3-phase, 380 (-10 \%) - 480 (+10 \%) V, 50/60 Hz
Motor voltage U_{2} : 3-phase, $\mathrm{U}_{2}=U_{\text {LN }} \mathrm{O}-50 / 60 \mathrm{~Hz}(\max .500 \mathrm{~Hz})$
Frame size: FS2 and FS3 with IP66 degree of protection

Figure 90:VSA 32...-B6SC, VSA 34...-B6SC block diagram
(1) Direct enable signal for STO function or relay: Safe Torque Off (STO), SIL 2 (EN 61800-5-2) as in \rightarrow Figure 82, page 116.
\longrightarrow The STO connection must be made by the user.

3.7.11 VSA 35...-B6SC

Mains voltage ULN: 3-phase, $500(-10 \%)-600(+10 \%)$ V, $50 / 60 \mathrm{~Hz}$
Motor voltage U_{2} : 3-phase, $U_{2}=U_{\text {LN }}, 0-50 / 60 \mathrm{~Hz}(\max .500 \mathrm{~Hz})$
Frame size: FS2 and FS3 with IP66 degree of protection

Figure 91:VSA 35...-B6SC block diagram
(1) Direct enable signal for STO function or relay: Safe Torque Off (STO), SIL 2 (EN 61800-5-2) as in \rightarrow Figure 87, page 121.
\longrightarrow The STO connection must be made by the user.

3.8 Insulation testing

The variable frequency drive of the VSA series are tested, delivered and require no additional testing.

CAUTION

On the control signal and the connection terminals of the variable frequency drive, no leakage resistance tests are to be performed with an insulation tester.

CAUTION

Wait at least 5 minutes after switching the supply voltage off before you disconnect one of the connection terminals (L1/L, $\mathrm{L} 2 / \mathrm{N}, \mathrm{L} 3, \mathrm{DC}-, \mathrm{DC}+\mathrm{BR}$) of the variable frequency drive.

If insulation testing is required in the power circuit of the PDS, you must consider the following measures.

Testing the motor cable insulation

- Disconnect the motor cable from the connection terminals U, V and W of the variable frequency drive and from the motor ($\mathrm{U}, \mathrm{V}, \mathrm{W}$). Measure the insulation resistance of the motor cable between the individual phase conductors and between the phase conductor and the protective conductor.
The insulation resistance must be greater than $1 \mathrm{M} \Omega$.

Testing the mains cable insulation

- Disconnect the power cable from the mains supply network and from the connection terminals $1 / L, L 2 / N$ and $L 3$ of the variable frequency drive. Measure the insulation resistance of the mains cable between the individual phase conductors and between each phase conductor and the protective conductor.
The insulation resistance must be greater than $1 \mathrm{M} \Omega$.

Testing the motor insulation

- Disconnect the motor cable from the motor ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) and open the bridge circuits (star or delta) in the motor terminal box.
Measure the individual motor windings' insulation resistance. The measurement voltage must at least match the rated operating voltage of the motor but is not to exceed 1000 V .

The insulation resistance must be greater than $1 \mathrm{M} \Omega$.
\rightarrow
Consider the notes from the motor manufacturer in testing the insulation resistance.

3.9 Protection against electric shock

Ensuring protection against electric shock when using VSA variable frequency drives, as per IEC/EN 61800-5-1

Manufacturer's declaration for the initial verification as per IEC/HD 60364-6
 (DIN VDE 0100-600 (VDE 0100-600)) and for periodic testing as per EN 50110-1 (DIN VDE 0105-100 (VDE 0105-100))

Fault protection in accordance with IEC/HD 60364-4-41 (DIN VDE 0100-410 (VDE 0100-410)) for the output-side circuits of the aforementioned apparatus is guaranteed provided that the following requirements are met:

- The installation instructions in this documentation have been observed.
- The applicable standards in the IEC/HD 60364 (DIN VDE 0100 (VDE 0100) series have been observed.
- The continuity of all associated protective conductors and equipotential bonding conductors, including the corresponding connection points, has been ensured.

Provided that the above requirements are met, the aforementioned apparatus meets the requirements in IEC/HD 60364-4-41 (DIN VDE 0100-410 (VDE 0100-410):2007-06, section 411.3.2.5) when using the "automatic power supply shutdown" protective measure.

The note is based on the following information:
In the event of a short-circuit with negligible impedance to a protective conductor or to earth, the aforementioned apparatus will reduce the output voltage within a time as required in table 41.1 or within 5 seconds depending on the applicable scenario - as per IEC/HD 60364-41 (DIN VDE 0100-410; VDE 0100-410):2007-06).

3 Installation
3.9 Protection against electric shock

4 Operation

4.1 Checklist for commissioning

Before placing the frequency converter into operation, use the checklist below to make sure that all the following requirements are met:

No.	Activity	Notes
1	Mounting and wiring have been carried out in accordance with the corresponding instructional leaflet (\rightarrow ILO4020015Z, ILO4020011Z, ILO4020012Z, ILO4020010Z).	
2	All wiring and line section leftovers, as well as all the tools used, have been removed from the variable frequency drive's proximity.	
3	All connection terminals in the power section and in the control section were tightened with the specified torque.	
4	The lines connected to the output terminals (U, V, W, DC+, DC-, BR) of the variable frequency drive are not short-circuited and are not connected to ground (PE).	
5	The variable frequency drive has been earthed properly (PE).	
6	All electrical connections in the power section (L1/L, L2/N, L3, U, V, W, DC+, DC-, BR, PE) have been connected properly while taking into account the degree of protection and have been dimensioned in line with the corresponding requirements. The device fan in frame size FS8 requires a connection with the correct phase sequence (L1-L2-L3). - check the airflow's direction.	
7	Each single phase of the supply voltage (L or L1, L2, L3) is protected with a fuse.	
8	The variable frequency drive and the motor are adapted to the mains voltage. (\rightarrow Section 1.4.1, ,'Rating data on the nameplate", page14, connection type (star, delta) of the motor tested).	
9	The quality and volume of cooling air are in line with the environmental conditions required for the variable frequency drive and the motor.	
10	All connected control cables comply with the corresponding stop conditions (e.g., switch in OFF position and setpoint value= zero).	
11	The parameters that were preset at the factory have been checked with the list of parameters.	
12	The effective direction of a coupled machine will allow the motor to start.	
13	All emergency switching off functions and safety functions ($\rightarrow \rightarrow$ Section 2.10, „STO function", page59) are in an appropriate condition.	

4 Operation

4.2 Hazard warnings for operation

4.2 Hazard warnings for operation

Please observe the following notes.

DANGER

Commissioning is only to be completed by qualified technicians.

DANGER

Hazardous voltage!
The safety instructions on pages I and II must be followed.

DANGER

The components in the variable frequency drive's power section are energized if the supply voltage (mains voltage) is connected. For instance: L1/L, L2/N, L3, DC+, DC-, BR, U/T1, V/T2, W/T3 power terminals.
The control signal terminals are isolated from the line power potential.
There can be a dangerous voltage on the relay terminals $(10,11)$ even if the variable frequency drive is not being supplied with line voltage (e.g., integration of relay contacts in control systems with voltage > $48 \mathrm{~V} \mathrm{AC/60} \mathrm{~V} \mathrm{DC)}$.

DANGER

The components in the variable frequency drive's power section remain energized up to five (5) minutes after the supply voltage has been switched off (internal DC link capacitor discharging time).

Pay attention to hazard warnings!

DANGER

Following a shutdown (fault, mains voltage off), the motor can start automatically (when the supply voltage is switched back on) if the automatic restart function has been enabled $(\rightarrow$ parameters P2-36).

4 Operation

4.3 Commissioning with control signal terminals (default settings)

NOTICE

Any contactors and switchgear on the power side are not to be opened during motor operation. Inching operation using the power switch is not permitted.

Contactors and switchgear (repair and maintenance switches) on the motor side must not be opened while the motor is in operation.
Inching operation of the motor with contactors and switching devices in the output of the variable frequency drive is not permissible.

notice

Make sure that there is no danger in starting the motor. Disconnect the driven machine if there is a danger in an incorrect operating state.

If motors are to be operated with frequencies higher than the standard 50 or 60 Hz , then these operating ranges must be approved by the motor manufacturer. The motors could be damaged otherwise.

4.3 Commissioning with control signal terminals (default settings)

The controls on VSA variable frequency drives are pre-wired at the factory; however, you will need to wire the STO inputs yourself. After the mains voltage and the rated motor are connected, the VSA variable frequency drive can be started with the local controls (see following connecting example).
> $\longrightarrow \quad \begin{aligned} & \text { You can skip this section if you want to set up the parameters } \\ & \text { directly for optimal operation of the variable frequency drive }\end{aligned}$ based on the motor data (rating plate) and the application.

The following shows a simplified connecting example of a connection with default settings.

4 Operation

4.3 Commissioning with control signal terminals (default settings)

Connecting example for three-phase motor

For simple commissioning with the preset default settings, connect the variable frequency drive as shown in the connecting example above.

The potentiometer should have a fixed resistance (connection to control signal terminals 5 and 7) of at least $1 \mathrm{k} \Omega$, up to a maximum of $10 \mathrm{k} \Omega$. A standard fixed resistance of $4.7 \mathrm{k} \Omega$ is recommended.

Make sure that the enable contacts (FWD/REV) are open and the STO is connected correctly before switching on the mains voltage.

\rightarrow
If the connections for the setpoint value potentiometer cannot be clearly allocated with terminals 5, 6 and 7, you should set the potentiometer to about 50% before giving the start release (FWD/REV) for the first time.

When the specified supply voltage is applied at the mains connection terminals (L1/L, L2/N, L3), the switched-mode power supply unit (SMPS) in the internal DC link will be used to generate the control voltage and light up the 7-segment LED display (STOP).
At this point, the variable frequency drive will be ready for operation (correct operating status) and in Stop mode.

4 Operation

4.3 Commissioning with control signal terminals (default settings)

The start release is done by actuating one of the digital inputs with +24 V :

- Terminal 2: FWD = Clockwise rotating field (Forward Run)
- Terminal 3: REV = Counterclockwise rotating field (Reverse Run)

The FWD and REV control commands are interlocked (exclusive OR) and require a rising voltage edge.

The frequency is shown with a minus sign with a start release with a left rotating field (REV).

- You can now set the output frequency ($0-50 \mathrm{~Hz}$) and, as a result, the speed of the connected three-phase motor ($0-\mathrm{n}_{\text {Motor }}$) by using the potentiometer via terminal 6 ($0-+10 \mathrm{~V}$ proportional voltage signal). The change in output frequency here is delayed based on the specified acceleration and deceleration ramps. In the default settings, these times are set to 5 seconds and to 10 seconds from a frame size FS4.

The acceleration and deceleration ramps specify the time change for the output frequency: from 0 to $f_{\text {max }}\left(W E=50 \mathrm{~Hz}\right.$) or from $f_{\text {max }}$ back to 0 .
Figure92 shows a good example of the process, if the release signal (FWD/ REV) is switched on and the maximum setpoint voltage reference voltage $(+10 \mathrm{~V})$ is applied. The speed of the motor follows the output frequency depending on the load and moment of inertia (slip), from zero to $n_{\text {max }}$.
If the release signal (FWD, REV) is switched off during operation, the inverter is blocked immediately (STOP). The motor comes to an uncontrolled stop (see (1) in Figure92).
The acceleration time is set in parameter P1-03.

Figure 92:Start-Stop command with maximum reference voltage
4.4 Handling the keypad

4.4 Handling the keypad

The keypad can be used to configure the VSA variable frequency drive's parameters and monitor its operation.

4.4.1 Operating unit elements

The following figure shows the elements of the VSA variable frequency drive integrated operating unit.

Figure 93:Operating unit view (example VSA...-A20C)
> \longrightarrow The integrated keypad on VSA...-A20C devices and the (optional) external DX-KEY-LED keypad feature a six-digit 7-segment LED display. Meanwhile, VSA...-B20C, VSA...-B55C devices and the (optional) external DX-KEY-OLED keypad feature a multilanguage cleartext display (OLED = organic light-emitting diode display). The function keys work the exact same way. The external DX-KEY-OLED keypad features two additional buttons (Hand, Auto). By default, these buttons do not do anything, and can only be configured (freely) in the PLC editor.

\longrightarrow On OLED displays, languages can be selected by pressing START + © simultaneously.

Display: Select Language.
The display language can be changed with the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ arrow keys.
The selected language setting can then be saved by pressing the $\mathbf{O K}$ button.
\rightarrow
The START, STOP, UP, and DOWN buttons need to be enabled with parameter P1-12 (local process data source).

Table 19: Keypad elements - Buttons

Button	Attribute ID	Explanation
© \mathbb{K}	OK	- Navigating in parameter mode - Opens and closes the parameter interface (press the button and hold it down for more than two seconds) - Saves parameter changes - Changes the value being displayed: A, rpm, etc. (real-time information)
	START	- Starts the variable frequency drive ${ }^{11}$ - Changes the operating direction ${ }^{2}$ I if the motor is running
	STOP	- Stops the variable frequency drive ${ }^{11}$ - Reset - Resetting after fault message
	UP	- Increases the speed ${ }^{11}$ - Increment numeric value or parameter number
	DOWN	- Decreases the speed ${ }^{11}$ - Decrement numeric value or parameter number
Note: 1) $\mathrm{P} 1-12=1$ (one operating direction) or $\mathrm{P} 1-12=2$ (two operating directions); The operating direction will be reversed when the START button is pressed 2) $\mathrm{P} 1-12=2$ only		

4 Operation

4.4 Handling the keypad

4.4.2 Adjust parameters

Table 20: Modify parameters

Commands		Description
$0 \mathbb{K}$		Press the $\mathbf{O K}$ button and hold it down for two seconds in order to access the parameter interface. \rightarrow The display will show the parameter that was last used.
		Use the $\mathbf{\triangle}$ and $\mathbf{\nabla}$ buttons to select a parameter.
$0 \mathbb{K}$		Press the $\mathbf{O K}$ button. The value of the selected parameter can be changed.
		Use the $\mathbf{\triangle}$ and $\mathbf{\nabla}$ buttons to change the parameter's value.
		Press the $\mathbf{O K}$ button to confirm the parameter value change. As soon as the parameter is displayed, the value will have been saved. Press the $\mathbf{O K}$ button and hold it down for two seconds in order to exit the parameter interface (display: "5toP").
		Switching between two parameter groups The parameters are in sequential order. This means that moving forward from the last parameter in a parameter group will take you directly to the first parameter in the next parameter group and the other way around. Note: In order to access the extended parameter groups, you will need to enter the corresponding password in parameter P1-14 (default passwords: level $2=101$, level $3=201$).
		Press the $\mathbf{\triangle}$ and $\mathbf{S T O P}$ buttons to jump to the first parameter in the next parameter group.
		Press the $\mathbf{\nabla}$ and $\mathbf{S T O P}$ buttons to jump to the first parameter in the previous parameter group.

4.4.3 Resetting Parameters (RESET)

Table 21: Resetting parameters (RESET)

Commands	Description

Reset to default settings

P

Resetting after a fault

> Press the STOP button to reset a fault message. The display will show StoP.

5 Fault messages

5．1 Introduction

VSA series variable frequency drives come with several built－in monitoring functions．When a deviation from the correct operating state is detected，an error message will be displayed；in the inverter＇s default settings，the relay contact will open（control signal terminals 14 and 15）．

5．1．1 Fault messages

The most recent four error messages will be stored in the order in which they occurred（with the most recent one in the first place）．Fault messages can be read from the monitor－parameter P0－13．The values will not be deleted if the variable frequency drive is reset to its default settings！

5．1．2 Acknowledge fault（Reset）

To acknowledge and reset the current error message，you can either switch off the supply voltage or press the STOP button．Error messages can also be reset with an additional positive edge at control signal terminal 2 （DI1）or 3 （DI2）（new start signal）．

If parameter P2－36 is set to a value between 2 （月しto－f）and 6 （Rレto－5）， the variable frequency drive will attempt to automatically start again up to five times．

5.1.3 Fault list

The following table lists the failure codes, the possible causes and indicates corrective measures.

Table 22: Fault messages list

Message	Error no. [dec]	Possible causes and fixes
5tap	-	Ready to start. There is no drive enable signal present. There are no fault messages present.
no-Fit	00	Shown for P0-13 if there are no messages in the error register.
-	01	Excessively high braking current - Check the brake resistor and its wiring for short-circuits and ground faults. - Make sure that the braking resistance value is not lower than the minimum permissible braking resistance.
C	02	Thermal overload on brake resistor The drive has been switched off in order to prevent the brake resistor from being thermally destroyed. - Make the P1-04 and P2-25 ramp times longer in order to have less frequent braking. - Reduce the load's inertia, if possible.
5-1	03	Overcurrent at variable frequency drive output Occurs right after switching on the unit: - Check the cable connection between inverter and motor. - Check the motor for shorted turns and ground faults. Occurs when starting the motor: - Check whether the motor can rotate freely and make sure that it is not being blocked mechanically. - Motor with mechanical brake: Check whether the brake is being applied. - Check the connection configuration (star/delta). - Check to make sure that the motor data was entered correctly in P1-07, P1-08, and P1-09. - In vector control mode (P4-01 = 0 or 1): Check to make sure that the $\cos \varphi$ (P4-05) value was entered correctly and that a motor identification run was performed correctly. - Increase the acceleration ramp time (t-acc, P1-03) if necessary. - In speed control mode (P4-01 = 2): Reduce the voltage boost with P1-11. Occurs during operation at a constant speed: - Check whether the motor is overloaded. Occurs during acceleration/deceleration: - The ramp times are too short and require too much power.If P-03 / P-04 cannot be increased, a larger device may be required.
İE-trr	04	Motor overload. The thermal protection mechanism has tripped as a result of the device being run above the rated motor current set with P1-08 longer than a specific time. - Check to make sure that the motor data was entered correctly in P1-07, P1-08, and P1-09. - In vector control mode (P4-01 = 0 or 1): Check to make sure that the $\cos \varphi$ (P4-05) value was entered correctly and that a motor identification run was performed correctly. - Check the motor's connection configuration (e.g., start/delta) - If the decimal points on the display flash during operation, this means that the unit is being run in its overload range (> P1-08). In this case, use P1-03 to make the acceleration ramp longer or reduce the load. - Make sure that the motor is not being mechanically blocked and that there are no additional loads on the motor.

Message	Error no. [dec]	Possible causes and fixes
P5-trr	05	Overcurrent (Hardware) - Check the wiring to the motor and the motor itself for short-circuits and ground faults. - Disconnect the motor cable from the variable frequency drive and switch the variable frequency drive back on. If the fault message still appears, the device needs to be replaced. Before commissioning the new device, check the system for short-circuits or ground faults that could have caused the device to fail.
C_ Lílt	06	Overvoltage in DC link The DC link voltage value can be viewed using parameter PO-20. P0-36 contains a fault register with the last values before the unit was switched off (scan time: 256 ms). - Check to make sure that the supply voltage falls within the range for which the variable frequency drive is sized. - If the fault occurs during deceleration or stopping: Make the deceleration ramp (P1-04/P2-25) longer or use the brake resistor. - In vector control mode ($\mathrm{P} 4-01=0$ or $=1$): Reduce the speed controller's gain (P4-03). - If using the PID controller: Reduce P3-11 (PID1 fault ramp) to ensure that the ramps are active.
	07	Undervoltage in DC link Note: Generally, this message will appear when the supply voltage is switched off on the device and the DC link voltage dies away. In this case, there is no fault. If the message appears during operation: - Check whether the power supply voltage is too low. - Check all components/devices in the variable frequency drive's feeder circuit (circuit-breaker, contactor, choke, etc.) to make sure they are connected properly and have an adequate contact resistance.
B-t	08	Overtemperature at heat sink. The drive is too hot. The heat sink temperature can be viewed by using PO-21. PO-38 contains a fault register with the last values before the unit was switched off (scan time: $30 \mathrm{~s})$. - Check to make sure that the variable frequency drive is being operated within the ambient temperature range specified for it. (IP20 devices: max. $50^{\circ} \mathrm{C}$; IP66 devices: max. $40^{\circ} \mathrm{C}$). - Check to make sure that the device fan is running. - Make sure that cooling air can circulate freely (clearances to neighboring devices above and below the variable frequency drive). - Improve the control cabinet's ventilation if necessary: The device's vents must not be obstructed, e.g., by dirt or as a result of devices being installed too close to each other. - Reduce the switching frequency with P2-24. - Reduce the load, if possible.
Li-t	09	Under-temperature The message will appear if the ambient air temperature falls below $-10^{\circ} \mathrm{C}$. In order to be able to start the drive, the temperature must be higher than this.
P-dEF	10	The parameters' default settings have been loaded. - Press the STOP button: You will be able to reconfigure the drive after doing so.

5.1 Introduction

Message	Error no. [dec]	Possible causes and fixes
E-trip	11	External fault (at digital input 5 , terminal 10 , if P1-13 $=6 / 7 / 16 / 17$). There must be a high-level signal at this input in order to be able to run the variable frequency drive. - If a thermistor is connected to terminal 10 , check whether the motor is too hot.
55-365	12	Communication fault with an external operating unit or with a PC. - Check connections.
Fit-dc	13	Excessively high DC link voltage ripple The DC link voltage ripple can be viewed using PO-16. PO-37 contains a fault register with the last values before the unit was switched off (scan time: 20 ms). - Check to make sure that all the mains supply phases are present and that their voltage balance falls within the permissible tolerance range (3%). - Reduce the load if possible. - If the fault persists, please contact your nearest Johnson Controls sales branch.
P-i 255	14	Incoming power phase failure (only for devices with a three-phase power supply)
ヶ	15	Overcurrent at output - See Error no. 03.
Eh-Fit	16	Malfunctioning heat sink thermistor. - Please contact your nearest Johnson Controls sales branch.
dFta-F	17	Error in internal memory. The parameters have not been saved and the default settings have been loaded. - Change the parameter values (again) and save them once more. - If the message appears again, please contact your nearest Johnson Controls sales branch.
$4-20$	18	The analog input's input current does not fall within the specified range. - Check the setting in P2-30 for AI1 (terminal 6) and P2-33 for AI2 (terminal 10). - In the case of 4-20 mA: Check the setpoint connection for wire breakage.
dFtA-E	19	Error in internal memory. The parameters have not been saved and the default settings have been loaded. - Change the parameter values (again) and save them once more. - If the message appears again, please contact your nearest Johnson Controls sales branch.
U-dEF	20	The customer's settings for the parameters have been imported. - Press the STOP button.
F-Ptc	21	Motor PTC thermistor over temperature
FRn-F	22	The device's internal fan is experiencing a fault In the case of frame size FS8: Wrong device fan operating direction - Check the supply voltage phase sequence (L1-L2-L3).
S-hERt	23	The measured ambient temperature exceeds the specified value. - Check the device's internal fan. - Make sure that the required clearance around the device is being maintained and that cooling air can flow through the vents on the device unimpeded. - Reduce the switching frequency with P2-24. - If possible: Reduce the load.
8-tar 9	24	Maximum permissible torque exceeded. - If possible: Reduce the load or increase acceleration time t-acc.
i-tar ${ }^{\text {a }}$	25	Only active if brake control is enabled in hoisting gear mode (P2-18 = 8). The torque produced before the hoisting gear's mechanical brake is enabled falls below the set threshold.

Message	Error no. [dec]	Possible causes and fixes
Cut-F	26	Device output fault - Please contact your nearest Johnson Controls sales branch.
5to-F	29	Internal STO circuit fault - Please contact your nearest Johnson Controls sales branch.
Enc-3:	30	No communication between the encoder module and the variable frequency drive. - Check to make sure that the module is correctly plugged in and secured.
$\begin{aligned} & \hline \text { Enc-BL } \\ & \text { SP-Err } \end{aligned}$	31	The calculated motor speed is different from the measured motor speed. - Check the encoder connection, including the corresponding shielding. - Increase the value of P6-07 if necessary.
Enc-03	32	The motor speed and the PPR value entered in P6-06 do not match. The PPR value in P6-06 must be at least 60 . - Check the speed entered in P1-10.
Enc-04	33	Channel A fault: Usually a bad connection. - Check wiring.
Enc-05	34	Channel B fault Usually a bad connection. - Check wiring.
Enc- 36	35	Error on channels A and B Usually a bad connection. - Check wiring.
AtF-G!	40	Motor identification failed: The measured stator resistance varies between the phases. - Make sure that the motor is connected properly and working correctly. - Check the motor windings to make sure they have the same resistance values.
AtF-H2	41	Motor identification failed: The measured stator resistance is too large. - Make sure that the motor is connected properly and working correctly. - Check to make sure that the device's rated output matches the motor's rated output. The difference should not exceed one full output class.
AtF- 33	42	Motor identification failed: The measured motor inductance is too low. - Make sure that the motor is connected properly and working correctly.
AtF- 54	43	Motor identification failed: The measured motor inductance is too high. - Make sure that the motor is connected properly and working correctly. - Check to make sure that the device's rated output matches the motor's rated output. The difference should not exceed one full output class.
AtF- 55	44	Motor identification failed: The measured motor parameters do not match. - Make sure that the motor is connected properly and working correctly. - Check to make sure that the device's rated output matches the motor's rated output. The difference should not exceed one full output class.
Out-Ph	49	A phase in the motor cable is not connected or has a discontinuity.
5c-FS!	50	No valid Modbus frame was received within the time specified in P5-06. - Check to make sure that the network master is working correctly. - Check connecting cables. - Increase the value of $\mathrm{P5}-06$ to an acceptable value.

5.1 Introduction

Message	Error no. [dec]	Possible causes and fixes
Sc-Fg2	51	No valid CANopen frame was received within the time specified in P5-06. - Check to make sure that the network master is working correctly. - Check connecting cables. - Increase the value of P5-06 to an acceptable value.
$5 c-F 03$	52	Communications between the device and the plugged-in field bus option have dropped out. - Check to make sure that the module is installed properly.
$52-F 24$	53	Communications between the device and the plugged-in I/O expansion have dropped out. - Check to make sure that the module is installed properly.
4F-Gi	60	No internal connection to an optional board
BF-G2	61	Optional module in undefined operating state
Pic-ת	70	Non-supported function block from function block editor
PLic-uc	71	Program from function block editor is too big
PLic-u3	72	Division by zero
$\mathrm{P}_{\mathrm{L}} \mathrm{C}-04$	73	Lower limit is higher than upper limit
PLT-05	74	Overflow table Function block editor

6 Technical Data

6.1 General rating data

Technical data	Symbol	Unit	Value
General			
Standards			EMC: EN 61800-3:2004+A1-2012 Radio interference: EN 55011: 2010 Safety: EN 61800-5: 2007 Degree of protection: EN 60529: 1992 Note: VSA $35 \ldots$ devices are not covered by the declaration of conformity for the EU EMC Directive.
Certifications and manufacturer's declarations on conformity			CE, UL, cUL, c-Tick, UkrSEPRO, Gost-R Note: Frame size FS 8 is not UL or cUL listed as of this writing.
Production quality			RoHS, ISO 9001
Climatic proofing	ρ_{w}	\%	< 95%, mean relative humidity (RH), non-condensing (EN 50178)
Ambient air temperature			
Operational			
IP20 (NEMA 0)	θ	?C	-10-+50 (frost-free and condensation-free)
IP55 (NEMA 3)	θ	?C	$-10-+40$, with derating of 1.5% per ${ }^{\circ} \mathrm{C}$ above $40^{\circ} \mathrm{C}$ on rated operational current l_{e} Note: Operation within a temperature range of 40 to $50^{\circ} \mathrm{C}$ does not conform to UL listing.
IP66 (NEMA 4X)	θ	${ }^{\circ} \mathrm{C}$	$-10-+40$, with a derating of 2.5% per ${ }^{\circ} \mathrm{C}$ above $40^{\circ} \mathrm{C}$ on rated operational current I_{e} Note: Operation within a temperature range of 40 to $50^{\circ} \mathrm{C}$ does not conform to UL listing.
Storage	θ	${ }^{\circ} \mathrm{C}$	-40-+60
$\mathrm{MTTF}_{\text {d }}$		Years	4525
MTBF (mean time between two failures)		Years	50
PFHD			1.23-09 1/h (0.12 \% of SIL)
Electrostatic discharge (ESD, EN 61000-4-2:2009	U	kV	± 4, contact discharge ± 8, air discharge
Fast transient burst (EFT/B, EN 61000-4-4: 2004)	U	kV	± 1, at 5 kHz , control signal terminal ± 2, at 5 kHz , motor connection terminals, Single-phase mains connection terminals ± 4, at 5 kHz , three-phase mains connection terminals

6 Technical Data

6.1 General rating data

Technical data	Symbol	Unit	Value
Overvoltage (surge, EN 61000-4-5: 2006)			
110-115V, 200-240 V	U	kV	± 1, phase to phase/neutral conductor ± 2, phase/neutral conductor to earth
380-480 V, 500-600 V	U	kV	± 2, phase to phase ± 4, phase to earth
Electric strength (flash, EN 61800-5-1: 2007)			
110-115V, 200-240 V	U	kV	1.5
380-480 V, 500-600 V	U	kV	2.5
Radio interference class (EMC)			
Category and maximum screened motor cable length with integrated radio interference suppression filter			
C1	I	m	1
C2	I	m	5
C3	I	m	25
Mounting position			vertical
Altitude	h	m	0-1000 above sea level, >1000 with 1% load current reduction every 100 m , maximum 2000 with UL approval, maximum 4000 without UL approval
Degree of protection			IP20 (NEMA 0) IP55 (NEMA 3) IP66 (NEMA 4X
Fan (built-in)			yes
Busbar tag shroud			BGV A3 (VBG4, finger- and back-of-hand proof)
Main circuit / power section			
Feeder unit			
Rated operating voltage			
VSA 12...	$\mathrm{U}_{\text {e }}$	V	1~230 (200 V -10\%-240 V +10\%)
VSA 32...	U_{e}	V	$3 \sim 230$ (200 V-10 \% - $240 \mathrm{~V}+10 \%$)
VSA 34...	U_{e}	V	3~ 400 (380 V -10 \% - $480 \mathrm{~V}+10 \%$)
VSA 35...	U_{e}	V	3~575 (500 V - $10 \%-600 \mathrm{~V}+10 \%$)
Mains frequency	f	Hz	50/60 ± 10 \%
Phase Imbalance		\%	max. 3
Maximum short-circuit current (supply voltage)	SCCR	kA	100 (according to IEC 60439-1)
Mains switch-on frequency			Maximum of one time every 30 seconds
Mains network configuration (AC power supply network)			TN and TT earthing systems with directly earthed neutral point. IT earthing systems with PCM insulation monitoring relays only. Operation on phase-earthed networks is only permissible up to a maximum phase-earth voltage of 300 V AC.

Technical data	Symbol	Unit	Value
Motor feeder			
Output voltage			
VSA 12..., VSA 32... VSA 34..., VSA 35...	U_{2}	V	$3 \sim 0-U_{e}$
Assigned motor output			
at $230 \mathrm{~V}, 50 \mathrm{~Hz}$	P	kW	0.75-75
at $400 \mathrm{~V}, 50 \mathrm{~Hz}$	P	kW	0.75-250
at $500 \mathrm{~V}, 60 \mathrm{~Hz}$	P	kW	0.75-110
Output Frequency			
Range, parameterizable	f_{2}	Hz	$0-50 / 60$ (max. 500 Hz)
resolution	Δf	Hz	0.1
Rated operational current	$l_{\text {e }}$	A	IP20: 4.3-24/370-450 IP55: 24-302 IP66: 4.3-18
Overload current for 60 s every 600 s	i	\%	150
Starting current for 4 s every 40 s	i	\%	200
Motor cable length			
screened	I	m	100
unscreened	I	m	150
with motor choke	$\Delta 1$	\%	100 (increased maximum cable length)
Switching frequency (pulse frequency)	fPWM	kHz	4-32 (double modulation) / 2-16 (effective) Maximum value depends on rating
Operate Mode			V/Hz control, slip compensation, vector control
SLV, max. speed error	$\Delta \mathrm{n}$	\%	± 0.5
DC braking			
Time before start	t	S	0-25, in the event of a stop
Motor pick-up control function (for catching spinning motors)			yes
Brake chopper			yes
Braking current during continuous operation	I_{BR}	\%	100 (1 e)
Maximum braking current	$\mathrm{I}_{\text {BRmax }}$	\%	150 for 60 s

6 Technical Data

6.1 General rating data

Technical data	Symbol	Unit	Value
Control section			
Terminal capacity (clampable)	A	mm²	0.05-2.5 (30-12 AWG)
Control voltage			
Output voltage (control signal terminal 1)	U_{c}	V DC	24
Input voltage (control signal terminal 1)	U_{c}	V DC	18-30
Load rating (control signal terminal 1), maximum	I	mA	100
Reference voltage (control signal terminal 5)	US	V DC	10
Load rating (control signal terminal 5), maximum	I	mA	10
Digital Input (DI)			
Number (configurable)			3-5
Logic (level)			Increase
Response time	t	ms	<4
Input voltage range High (1)	U_{C}	V DC	8-30
Input voltage range Low (0)	U_{c}	V DC	0-4
Analog Input (Al)			
Number (configurable)			0-2
resolution			12 bits
accuracy		\%	< 1 to the final value
Response time	t	ms	<4
Input voltage range	$U_{\text {Ref }}$	V	0/-10-10, DC ($\left.\mathrm{R}_{\mathrm{i}} \sim 72 \mathrm{k} \Omega\right)$
Input current range	I	mA	0/4-20 ($\mathrm{R}_{\mathrm{B}} \sim 500 \Omega$)
Setpoint potentiometer (recommended fixed resistance)	R	k Ω	1-10
Relay output (K)			
Number of relays (contacts)			2 (1 N/0/1 changeover contact)
Switching capacity			
AC	I	A	6 (250 V)
DC current	I	A	$5(30 \mathrm{~V})$
Digital/analog output (DO/AO)			
Quantity			2 (digital/analog)
Output voltage			
TH	$\mathrm{U}_{\text {out }}$	V DC	+24
AO	$\mathrm{U}_{\text {out }}$	V DC	0/-10-+10
AO resolution	${ }_{\text {out }}$	mA	<20
			12 bits
Interface (RJ45)			OP bus, Modbus RTU, CANopen, (RS485)
STO (Safe Torque Off)			
Voltage	U	V DC	+24 (18-30)
Current	1	mA	100
SIL category			2
PL			d

6.2 Specific rated operational data

6.2.1 VSA 12... series

Physical quantity	Symbol	Unit	4D3	7D0	011
Rated operational current	l_{e}	A	4.3	7.0	10.5
Overload current for 60 s every 600 s	1	A	6.45	10.5	15.75
Apparent power at rated operation ${ }^{11}$	S	kVA	1.71	2.79	4.18
	S	kVA	1.79	2.91	4.36
Assigned motor power 230 V	P	kW	0.75	1.5	2.2
	P	HP	1	2	3
Power side (primary side):					
Number of phases			single-phase or two-phase		
Rated voltage	ULN	V	$\begin{aligned} & 200-10 \%-240+10 \%, 50 / 60 \mathrm{~Hz} \\ & (180-264 \mathrm{~V} \pm 0 \%, 48-62 \mathrm{~Hz} \pm 0 \%) \end{aligned}$		
Input current (phase current)	LLN	A	9	13	19
Minimum braking resistance	R_{B}	Ω	100	50	35
Switching frequency (pulse frequency)					
Default settings	fPWM	kHz	16	16	16
Setting range	fPWM	kHz	$4-32 \mathrm{kHz}$	4-32	4-32
Maximum leakage current to earth (PE), without motor	IPE	mA	2.49	2.49	2.49
Efficiency	η		0.94	0.96	0.95
Heat dissipation at l_{e}	P_{V}	W	45.75	63	103.4
Frame size			FS2	FS2	FS2

6 Technical Data

6.2 Specific rated operational data

6.2.2 VSA 32... series

Physical quantity	Symbol	Unit	4D3	7D0	011	018	024	024
Rated operational current	l_{e}	A	4.3	7.0	10.5	18	24	24
Overload current for 60 s every 600 s	i	A	6.45	10.5	15.75	27	36	36
Apparent power at rated operation 230 V	S	kVA	1.71	2.79	4.18	7.17	9.56	9.56
240 V	S	kVA	1.79	2.91	4.36	7.48	9.98	9.98
Assigned Instance Motor Power 230 V	P	kW	0.75	1.5	2.2	4.0	5.5	5.5
230 V	P	HP	1	2	3	5	7.5	7.5
Power side (primary side):								
Number of phases			three-p					
Rated operating voltage	ULN	V	$\begin{aligned} & 200 \mathrm{~V} \\ & 180-2 \end{aligned}$	$\begin{aligned} & \%-240 \\ & V \pm 0 \%, \end{aligned}$	$\begin{aligned} & 10 \%, 50 \\ & 62 \mathrm{~Hz} \pm 1 \end{aligned}$			
Input current (phase current)	Ln	A	6	11	13	21	26	27
Minimum braking resistance	R_{B}	Ω	100	50	35	20	20	20
Switching frequency (pulse frequency)								
Default settings	$f_{\text {PWM }}$	kHz	16	16	16	16	16	16
Setting range	$f_{\text {PWWM }}$	kHz	4-32	4-32	4-32	4-32	4-16	4-16
Maximum leakage current to earth (PE), without motor	IPE	mA	1.73	1.73	1.73	0.93	0.93	1.42
Efficiency	η		0.95	0.96	0.96	0.96	0.97	0.97
Heat dissipation at l_{e}	Pv	W	39.75	61.5	90.2	160	170.5	170.5
Frame size			FS2	FS2	FS2	FS3	FS3	FS4

6 Technical Data

6.2 Specific rated operational data

VSA 32... series						
Physical quantity	Symbol	Unit	150	180	202	248
Rated operational current	l_{e}	A	150	180	202	248
Overload current for 60 s every 600 s	i	A	225	270	303	372
Apparent power at rated operation	S	kVA	59.8	71.7	80.5	98.8
	S	kVA	62.4	74.8	84	103.1
Assigned Instance Motor Power	P	kW	37	45	55	75
	P	HP	50	60	75	100
Power side (primary side):						
Number of phases			three-phase			
Rated operating voltage	ULN	V	$\begin{aligned} & 200 \mathrm{~V}-10 \%-240 \mathrm{~V}+10 \%, 50 / 60 \mathrm{~Hz} \\ & (180-264 \mathrm{~V} \pm 0 \%, 48-62 \mathrm{~Hz} \pm 0 \%) \end{aligned}$			
Input current (phase current)	Lin	A	160	188	207	246
Minimum braking resistance	R_{B}	Ω	6	6	6	6
Switching frequency (pulse frequency)						
Default settings	fPWM	kHz	4	4	4	4
Setting range	fPWM	kHz	4-12	4-8	4-16	4-12
Maximum leakage current to earth (PE), without motor	IPE	mA	1.54	1.54	2.74	2.74
Efficiency	η		0.97	0.98	0.98	0.98
Heat dissipation at l_{e}	Pv	W	814	945	1100	1425
Frame size			FS6	FS6	FS7	FS7

6.2.3 VSA 34... series

Physical quantity	Symbol	Unit	2D2	4D1	5D8	9D5	014	018	024
Rated operational current	I_{e}	A	2.2	4.1	5.8	9.5	14	18	24
Overload current for 60 s every 600 s	i)	A	3.3	6.15	8.7	14.25	21	27	36
Apparent power at rated operation 400 V	S	kVA	1.52	2.84	4.02	6.58	9.7	12.5	16.6
480 V	S	kVA	1.83	3.41	4.8	7.9	11.6	15	20
Assigned Instance Motor Power 400 V	P	kW	0.75	1.5	2.2	4.0	5.5	7.5	11
460 V	P	HP	1	2	3	5	7.5	10	15
Power side (primary side):									
Number of phases			three						
Rated operating voltage	ULN	V	$\begin{aligned} & 380 \mathrm{~V}- \\ & (342-5 \end{aligned}$	$\begin{aligned} & \%-480 \\ & V \pm 0 \%, \end{aligned}$	$\begin{gathered} 10 \%, 50 \\ 62 \mathrm{~Hz} \pm \end{gathered}$				
Input current (phase current)	Ln	A	3.5	6	7.5	12	17	22	28
Minimum braking resistance	R_{B}	Ω	400	200	150	100	75	50	40
Switching frequency (pulse frequency)									
Default settings	fPWM	kHz	8	8	8	8	8	8	8
Setting range	fPWM	kHz	4-32	4-32	4-32	4-32	4-24	4-24	4-16
Maximum leakage current to earth (PE), without motor	IPE	mA	4.65	4.65	4.65	4.65	1.55	1.55	1.55
Efficiency	η		0.92	0.95	0.95	0.96	0.96	0.97	0.97
Heat dissipation at l_{e}	PV	W	63.75	76.5	101.2	136	209	300	297
Frame size			FS2	FS2	FS2	FS2	FS3	FS3	FS3

6 Technical Data

6.2 Specific rated operational data

VSA 34... series									
Physical quantity	Symbol	Unit	024	030	039	046	061	072	090
Rated operational current	l_{e}	A	24	30	39	46	61	72	90
Overload current for 60 s every 600 s	i	A	36	45	58.5	69	91.5	108	135
Apparent power at rated operation 400 V	S	kVA	16.6	20.8	27	31.9	42.3	49.9	62.4
480 V	S	kVA	20	24.9	32.4	38.2	50.7	59.9	74.8
Assigned Instance Motor Power 400 V	P	kW	11	15	18.5	22	30	37	45
460 V	P	HP	15	20	25	30	40	50	60
Power side (primary side):									
Number of phases				three-					
Rated operating voltage	ULN	V							
Input current (phase current)	LLN	A	28	34	44	52	66	77	103
Minimum braking resistance	RB	Ω	40	22	22	22	12	12	6
Switching frequency (pulse frequency)									
Default settings	fPWM	kHz	8	8	8	8	8	8	4
Setting range	fPWM	kHz	4-16	4-24	4-24	4-24	4-24	4-24	4-16
Maximum leakage current to earth (PE), without motor	IPE	mA	2.47	2.47	2.47	2.47	0.49	0.49	2.68
Efficiency	η		0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heat dissipation at l_{e}	PV	W	297	375	444	506	840	925	1080
Frame size			FS4	FS4	FS4	FS4	FS5	FS5	FS6

VSA 34... series											
Physical quantity		Symbol	Unit	110	150	180	202	240	302	370	450
Rated operational current		I_{e}	A	110	150	180	202	240	302	370	456
Overload current for 60 s every 600 s		i	A	165	225	270	303	360	453	555	675
Apparent power at rated operation	400 V	S	kVA	76.2	104	125	140	166	209	256	311
	480 V	S	kVA	91.5	125	150	168	200	251	307	332
Assigned Instance Motor Power	400 V	P	kW	55	75	90	110	132	160	200	250
	460 V	P	HP	75	120	150	175	200	250	300	350
Power side (primary side):											
Number of phases				three-p							
Rated operating voltage		ULN	V	380 V -	- 480	\%,	Hz (342	$\mathrm{V} \pm 0$	-62		
Input current (phase current)		Ln	A	126	165	192	211	241	299	377	459
Minimum braking resistance		R_{B}	Ω	6	6	6	6	6	6	2	2
Switching frequency (pulse frequency)											
Default settings		fpWM	kHz	4	4	4	4	4	4	4	4
Setting range		fPWM	kHz	4-16	4-12	4-8	4-16	4-12	4-8	4-8	4-8
Maximum leakage current to earth (PE), without motor		IPE	mA	2.68	2.68	2.68	4.75	4.75	4.75	N/A	N/A
Efficiency		η		0.98	0.98	0.98	0.98	0.98	0.98	N/A	N/A
Heat dissipation at I_{e}		P_{V}	W	1210	1575	1800	2090	2375	3040	4000	5000
Frame size				FS6	FS6	FS6	FS7	FS7	FS7	FS8	FS8

6 Technical Data

6.2 Specific rated operational data

6.2.4 VSA 35... series

VSA 35... devices are not covered by the declaration of conformity.
Additional radio interference suppression filters are required for compliance.

Physical quantity	Symbol	Unit	2 D 1	3D1	4D1	6D5	9D0	012
Rated operational current	I_{e}	A	2.1	3.1	4.1	6.5	9	12
Overload current for 60 s every 600 s at $50^{\circ} \mathrm{C}$	i,	A	3.15	4.65	6.15	9.75	13.5	18
Apparent power at rated operation 500 V	S	kVA	1.6	2.1	2.4	4.3	6	7.5
600 V	S	kVA	2	2.5	2.9	5.1	7.3	9
Assigned Instance Motor Power 500 V	P	kW	0.75	1.5	2.2	4	5.5	7.5
575 V	P	HP	1	2	3	5	7.5	10
Power side (primary side):								
Number of phases			three-p					
Rated operating voltage	ULN	V	500 V	-600	\%, 50			
Input current (phase current)	Ln	A	3.5	4.5	4.5	9	12	15
Minimum braking resistance	R_{B}	Ω	50	50	50	50	50	40
Switching frequency (pulse frequency)								
Default settings	fPWM	kHz	8	8	8	8	8	8
Setting range	fPWM	kHz	4-24	4-24	4-24	4-24	4-24	4-24
Maximum leakage current to earth (PE), without motor	IPE	mA	-	-	-	-	-	-
Efficiency	η		0.97	0.97	0.97	0.97	0.97	0.97
Heat dissipation at l_{e}	PV	W	22.5	45	66	120	165	225
Frame size			FS2	FS2	FS2	FS2	FS2	FS3

VSA 35... series								
Physical quantity	Symbol	Unit	017	022	022	028	034	043
Rated operational current	I_{e}	A	17	22	22	28	34	43
Overload current for 60 s every 600 s	i	A	25.5	33	33	42	51	64.5
Apparent power at rated operation	S	kVA	10.4	12.7	12.7	16	19.5	24.4
	S	kVA	12.5	15.2	15.5	19.3	23.4	29.3
Assigned Instance Motor Power 500 V 575 V	P	kW	11	15	15	18.5	22	30
	P	HP	15	20	20	25	30	40
Power side (primary side):								
Number of phases			three-phase					
Rated operating voltage	$U_{\text {LN }}$	V	$500 \mathrm{~V}-10 \%-600 \mathrm{~V}+10 \%, 50 / 60 \mathrm{~Hz}$					
Input current (phase current)	Ln	A	21	26	26	33	40	49
Minimum braking resistance	R_{B}	Ω	40	40	22	22	22	22
Switching frequency (pulse frequency)								
Default settings	fPWM	kHz	8	8	8	8	8	8
Setting range	fPWM	kHz	24	24	24	24	24	24
Maximum leakage current to earth (PE), without motor	IPE	mA	-	-	-	-	-	-
Efficiency	η		0.97	0.97	0.97	0.97	0.97	0.97
Heat dissipation at l_{e}	Pv	W	330	450	450	555	660	850
Frame size			FS3	FS3	FS4	FS4	FS4	FS4

6 Technical Data

6.2 Specific rated operational data

VSA 35... series								
Physical quantity	Symbol	Unit	054	065	078	105	130	150
Rated operational current	I_{e}	A	54	65	78	105	130	150
Overload current for 60 s every 600 s	i	A	81	97.5	117	157.5	195	225
Apparent power at rated operation	S	kVA	29.7	35.2	45.2	60.5	71.5	79.1
	S	kVA	35.6	42.2	54.3	72.6	85.9	95
Assigned Instance Motor Power	P	kW	37	45	55	75	90	110
	P	HP	50	60	75	100	125	150
Power side (primary side):								
Number of phases			three-phase					
Rated operating voltage	ULN	V	$500 \mathrm{~V}-10 \%-600 \mathrm{~V}+10 \%, 50 / 60 \mathrm{~Hz}$					
Input current (phase current)	Ln	A	60	71	91	121	143	158
Minimum braking resistance	R_{B}	Ω	12	12	6	6	6	6
Switching frequency (pulse frequency)								
Default settings	fPWM	kHz	8	8	4	4	4	4
Setting range	fPWM	kHz	4-24	4-24	4-16	4-16	4-12	4-12
Maximum leakage current to earth (PE), without motor	IPE	mA	-	-	-	-	-	-
Efficiency	η		0.97	0.97	0.97	0.97	0.97	0.97
Heat dissipation at l_{e}	Pv	W	1110	1350	1650	2250	2700	3300
Frame size			FS5	FS5	FS6	FS6	FS6	FS6

6.3 Dimensions

6.3.1 Frame sizes FS2 and FS3 in IP20

Figure 94:Sizes FS2 and FS3 in IP20 (NEMA 0)
Table 23: Dimensions and weights for sizes FS2 and FS3 in IP20 (NEMA 0)

Frame size	$\begin{aligned} & \hline \mathbf{a} \\ & {[\mathrm{mm}]} \\ & (\mathrm{in}) \end{aligned}$	a 1 $[\mathrm{~mm}]$ (in)	$\begin{aligned} & \hline \mathbf{b} \\ & {[\mathrm{mm}]} \\ & (\mathrm{in}) \end{aligned}$	b1 $[\mathrm{mm}]$	b2 $[\mathrm{mm}]$ (in)	$\underset{[\mathrm{cm})}{\mathrm{c}}{ }_{[\mathrm{mm}]}$	$\begin{aligned} & \hline \mathbf{c 1} \\ & {[\mathrm{mm}]} \\ & (\mathrm{in}) \end{aligned}$	$\begin{aligned} & \varnothing 1 \\ & {[\mathrm{~mm}]} \\ & (\mathrm{in}) \end{aligned}$	$\varnothing 2$ $[\mathrm{~mm}]$ (in)	$\begin{aligned} & \hline \mathrm{m} \\ & {[\mathrm{~kg}]} \\ & \text { (lbs) } \end{aligned}$
FS2	$\begin{aligned} & \hline 107 \\ & (4.2) \end{aligned}$	$\begin{aligned} & \hline 75 \\ & (3) \end{aligned}$	$\begin{aligned} & \hline 231 \\ & (9.1) \end{aligned}$	$\begin{aligned} & \hline 215 \\ & (8.5) \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 0.31 \end{aligned}$	$\begin{aligned} & \hline 185.5 \\ & (7.3) \end{aligned}$	$\begin{aligned} & \hline 5 \\ & (0.2) \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & (0.26) \end{aligned}$	$\begin{aligned} & \hline 12.2 \\ & (0.48) \end{aligned}$	$\begin{aligned} & \hline 1.8 \\ & (3.97) \end{aligned}$
FS3	$\begin{aligned} & \hline 131 \\ & (5.2) \end{aligned}$	$\begin{aligned} & \hline 100 \\ & (3.9) \end{aligned}$	$\begin{aligned} & \hline 273 \\ & (10.8) \end{aligned}$	$\begin{aligned} & 255 \\ & (10) \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 0.33 \end{aligned}$	$\begin{aligned} & \hline 204 \\ & (8) \end{aligned}$	$\begin{aligned} & \hline 5 \\ & (0.2) \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & (0.26) \end{aligned}$	$\begin{aligned} & \hline 12.2 \\ & (0.48) \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & (7.72) \end{aligned}$

$1 \mathrm{in}=1^{\prime \prime}=25.4 \mathrm{~mm}, 1 \mathrm{~mm}=0.0394 \mathrm{in}$

6 Technical Data
6.3 Dimensions

6.3.2 Frame sizes FS4 to FS7 in IP55

Figure 95:Sizes FS4 to FS7 in IP55 (NEMA 12)
Table 24: Dimensions and weights for sizes FS4 to FS7 in IP55 (NEMA 12)

Frame size	$\begin{aligned} & \hline \mathbf{a} \\ & {[\mathrm{mm}]} \\ & (\mathrm{in}) \end{aligned}$	$\begin{aligned} & \hline \text { a1 } \\ & {[\mathrm{mm}]} \\ & (\mathrm{in}) \end{aligned}$	$\begin{aligned} & \hline \mathbf{b} \\ & {[\mathrm{mm}]} \\ & (\mathrm{in}) \end{aligned}$	b 1 $[\mathrm{~mm}]$ (in)	$\begin{aligned} & \hline \text { b2 } \\ & {[\mathrm{mm}]} \\ & (\mathrm{in}) \end{aligned}$	$\begin{aligned} & \mathbf{c} \\ & {[\mathrm{mm}]} \\ & (\mathrm{in}) \end{aligned}$	$\begin{aligned} & \hline \mathbf{c 1} \\ & {[\mathrm{mm}]} \\ & (\mathrm{in}) \end{aligned}$	$\begin{aligned} & \hline \varnothing 1 \\ & {[\mathrm{~mm}]} \\ & (\mathrm{in}) \end{aligned}$	$\begin{aligned} & \quad \varnothing 2 \\ & {[\mathrm{~mm}]} \\ & (\mathrm{in}) \end{aligned}$	$\begin{aligned} & \hline \mathrm{m} \\ & {[\mathrm{~kg}]} \\ & \text { (lbs) } \end{aligned}$
FS4	$\begin{aligned} & \hline 173 \\ & (6.8) \end{aligned}$	$\begin{aligned} & \hline 110 \\ & (175) \end{aligned}$	$\begin{aligned} & \hline 450 \\ & (17.7) \end{aligned}$	$\begin{aligned} & \hline 433 \\ & (17.1) \end{aligned}$	$\begin{aligned} & 9 \\ & (0.35) \end{aligned}$	$\begin{aligned} & 240 \\ & (9.7) \end{aligned}$	$\begin{aligned} & \hline 2 \\ & (0.79) \end{aligned}$	$\begin{aligned} & \hline 8 \\ & (0.32) \end{aligned}$	$\begin{aligned} & \hline 15 \\ & (0.59) \end{aligned}$	$\begin{aligned} & \hline 11.5 \\ & (25.35) \end{aligned}$
FS5	$\begin{aligned} & \hline 235 \\ & \text { (9.3) } \end{aligned}$	$\begin{aligned} & \hline 175 \\ & (6.9) \end{aligned}$	$\begin{aligned} & \hline 540 \\ & (21.3) \end{aligned}$	$\begin{aligned} & \hline 520 \\ & (20.5) \end{aligned}$	$\begin{aligned} & \hline 12 \\ & 0.47 \end{aligned}$	$\begin{aligned} & 270 \\ & (10) \end{aligned}$	$\begin{aligned} & \hline 2 \\ & (0.79) \end{aligned}$	$\begin{aligned} & \hline 8 \\ & (0.32) \end{aligned}$	$\begin{aligned} & \hline 15 \\ & (0.59) \end{aligned}$	$\begin{aligned} & \hline 22.5 \\ & (49.60) \end{aligned}$
FS6	$\begin{aligned} & 330 \\ & (13) \end{aligned}$	$\begin{aligned} & 200 \\ & (7.9) \end{aligned}$	$\begin{aligned} & \hline 865 \\ & (34.1) \end{aligned}$	$\begin{aligned} & \hline 840 \\ & (33.1) \end{aligned}$	$\begin{aligned} & \hline 15 \\ & 0.59 \end{aligned}$	$\begin{aligned} & \hline 322 \\ & (13) \end{aligned}$	$\begin{aligned} & \hline 2 \\ & (0.79) \end{aligned}$	$\begin{aligned} & 11 \\ & (0.43) \end{aligned}$	$\begin{aligned} & 22 \\ & (0.87) \end{aligned}$	$\begin{aligned} & 50 \\ & (110.23) \end{aligned}$
FS7	$\begin{aligned} & \hline 330 \\ & (14.2) \end{aligned}$	$\begin{aligned} & 200 \\ & (7.9) \end{aligned}$	$\begin{aligned} & \hline 1280 \\ & (50.4) \end{aligned}$	$\begin{aligned} & 1255 \\ & (49.5) \end{aligned}$	$\begin{aligned} & \hline 15 \\ & (0.59) \end{aligned}$	$\begin{aligned} & \hline 348 \\ & (14.2) \end{aligned}$	$\begin{aligned} & \hline 2 \\ & (0.79) \end{aligned}$	$\begin{aligned} & \hline 11 \\ & (0.43) \end{aligned}$	$\begin{aligned} & \hline 22 \\ & (0.87) \end{aligned}$	$\begin{aligned} & \hline 80 \\ & (176.37) \end{aligned}$

$1 \mathrm{in}=1^{\prime \prime}=25.4 \mathrm{~mm}, 1 \mathrm{~mm}=0.0394 \mathrm{in}$

6.3.3 Frame size FS8 in IP20

Figure 96:Frame size FS8 in IP20 (NEMA 0)
Table 25: Dimensions and weights for frame size FS8 in IP20 (NEMA 0)

Frame size	a [mm] (in)	a1 [mm] (in)	b [mm] (in)	b1 [mm] (in)	b2 [mm] (in)	$\begin{aligned} & \mathbf{c} \\ & {[\mathrm{mm}]} \\ & (\mathrm{in}) \end{aligned}$	c1 [mm] (in)	$\varnothing 1$ [mm] (in)	$\varnothing 2$ [mm] (in)	m [kg] (lbs)
FS8	$\begin{aligned} & \hline 480 \\ & (18.9) \end{aligned}$	$\begin{aligned} & 420 \\ & (16.5) \end{aligned}$	$\begin{aligned} & 1005 \\ & (39.6) \end{aligned}$	$\begin{aligned} & 944 \\ & (37.2) \end{aligned}$	$\begin{aligned} & \hline 30 \\ & (1.18) \end{aligned}$	$\begin{aligned} & \hline 480 \\ & (18.9) \end{aligned}$	$\begin{aligned} & \hline 3 \\ & (0.12) \end{aligned}$	$\begin{aligned} & \hline 15 \\ & (0.59) \end{aligned}$	$\begin{aligned} & \hline 35 \\ & (1.38) \end{aligned}$	$\begin{aligned} & 130 \\ & (286.6) \end{aligned}$

$1 \mathrm{in}=1^{\prime \prime}=25.4 \mathrm{~mm}, 1 \mathrm{~mm}=0.0394 \mathrm{in}$

6 Technical Data
6.3 Dimensions

6.3.4 Frame sizes FS2 and FS3 in IP66

Figure 97:Frame sizes FS2 and FS3 in IP66 (NEMA 4X)
Table 26: Dimensions and weights for sizes FS2 and FS3 in IP66 (NEMA 4X)

Frame size	${ }_{[\mathrm{mm}]}^{\mathrm{a}}$ (in)	a1 [mm] (in)	b $[\mathrm{mm}]$ (in)	$\begin{aligned} & \hline \text { b1 } \\ & {[\mathrm{mm}]} \\ & (\mathrm{in}) \end{aligned}$	b2 $[\mathrm{mm}$] (in)	c $[\mathrm{mm}]$ (in)	$\begin{aligned} & \hline \mathbf{c 1} \\ & {[\mathrm{mm}]} \\ & (\mathrm{in}) \end{aligned}$	$\begin{aligned} & \varnothing 1 \\ & {[\mathrm{~mm}]} \\ & (\mathrm{in}) \end{aligned}$	$\begin{aligned} & \varnothing 2 \\ & {[\mathrm{~mm}]} \\ & (\mathrm{in}) \end{aligned}$	${ }_{\text {[kg] }}$ (lbs)
FS2	$\begin{aligned} & 188 \\ & (7.4) \end{aligned}$	$\begin{aligned} & \hline 176 \\ & \text { (6.93) } \end{aligned}$	$\begin{aligned} & 257 \\ & (10.12) \end{aligned}$	$\begin{aligned} & \hline 200 \\ & (7.87) \end{aligned}$	$\begin{aligned} & \hline 20 \\ & (0.79) \end{aligned}$	$\begin{aligned} & \hline 239 \\ & (9.42) \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & (0.14) \end{aligned}$	$\begin{aligned} & \hline 4.2 \\ & (0.16) \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & (0.33) \end{aligned}$	$\begin{aligned} & \hline 4.8 \\ & (10.6) \end{aligned}$
FS3	$\begin{aligned} & \hline 211 \\ & (8.29) \end{aligned}$	$\begin{aligned} & \hline 198 \\ & (7.78) \end{aligned}$	$\begin{aligned} & \hline 310 \\ & (12.2) \end{aligned}$	$\begin{aligned} & \hline 252 \\ & (9.9) \end{aligned}$	$\begin{aligned} & \hline 25 \\ & (0.98) \end{aligned}$	$\begin{aligned} & \hline 266 \\ & (10.48) \end{aligned}$	$\begin{aligned} & 3.5 \\ & (0.14) \end{aligned}$	$\begin{aligned} & 4.2 \\ & (0.16) \end{aligned}$	$\begin{aligned} & 8.5 \\ & (0.33) \end{aligned}$	$\begin{aligned} & 7.3 \\ & (16.1) \end{aligned}$

$1 \mathrm{in}=1^{\prime \prime}=25.4 \mathrm{~mm}, 1 \mathrm{~mm}=0.0394 \mathrm{in}$

6.4 Cable cross-sections

Table 27: Cable cross-sections - voltage class 230 V

Device Type	Frame size	Maximum terminal capacity		Input current$I_{L N}$	Feeder unit cross-sectional area		Output current$\mathbf{I}_{\mathbf{e}}$	Motor connection cross-sectional area ${ }^{2)}$	
					L1/L, L2/N, L3, PE			U, V, W, PE	
		mm ${ }^{2}$	AWG/ kcmil ${ }^{11}$	A	mm²	AWG/ kcmil	A	mm^{2}	AWG/ kcmil

Mains voltage: 230 V
Supply voltage (50/60 Hz) ULN $200(-10 \%)$ - 240 (+10 \%) V
$\mathbf{U}_{\mathrm{e}} \mathbf{2 3 0}$ V AC, single-phase / $\mathbf{U}_{\mathbf{2}} \mathbf{2 3 0}$ V AC, three-phase

VSA 124D3FB-...	FS2	8	8	9	2.5	14	4.3	1.5	14
VSA 127D0FB-...	FS2	8	8	13	4	12	7	1.5	14
VSA 2011FB-...	FS2	8	8	19	4	10	10.5	1.5	14

Mains voltage: 230 V

Supply voltage ($50 / 60 \mathrm{~Hz}$) ULN $200(-10 \%)-240(+10 \%)$ V
$\mathrm{U}_{\mathrm{e}} 230 \mathrm{~V}$ AC, three-phase / $\mathrm{U}_{2} 230 \mathrm{~V} \mathrm{AC}$, three-phase

VSA 324D3FB-...	FS2	8	8	6	1.5	14	4.3	1.5	14
VSA 327DOFB-...	FS2	8	8	11	2.5	14	7	1.5	14
VSA 32011FB-...	FS2	8	8	13	2.5	12	10.5	1.5	14
VSA 32018FB-...	FS3	8	8	21	6	10	18	2.5	10
VSA 32024FB-A20C	FS3	8	8	26	10	8	24	4	10
VSA 32024FB-B55C	FS4	16	5	27	10	8	24	4	10
VSA 32030FB-B55C	FS4	16	5	33	16	8	30	6	8
VSA 32046FB-B55C	FS4	16	5	50	25	4	46	10	6
VSA 32061FB-B55C	FS5	35	2	64	35	3	61	16	4
VSA 32072FB-B55C	FS5	35	2	74	50	2	72	25	3
VSA 32090FB-B55C	FS6	150	300	99	70	1	90	35	2
VSA 32110FB-B55C	FS6	150	300	121	70	2/0	110	50	1/0
VSA 32150FB-B55C	FS6	150	300	160	120	4/0	150	70	3/0
VSA 32180FB-B55C	FS6	150	300	188	120	4/0	180	95	4/0
VSA 32202FB-B55C	FS7	150	300	207	185	300	202	120	250
VSA 32248FB-B55C	FS7	150	300	246	2×95	400	248	150	350

1) $A W G=$ American wire gauge
$\mathrm{kcmil}=$ Thousands of circular mils ($1 \mathrm{kcmil}=0.5067 \mathrm{~mm}^{2}$)
2) Maximum motor cable length $=100 \mathrm{~m}(330 \mathrm{ft})$
6.4 Cable cross-sections

Table 28: Cable cross-sections - voltage class 400 V

Device Type	Frame size	Maximum terminal capacity		Input current	Feeder unit cross-sectional area		Output current $I_{\text {e }}$	Motor connection cross-sectional area ${ }^{2)}$	
	ILN			lıN	L1/L, L2/N, L3, PE			U, V, W, PE	
	A	mm^{2}	AWG/ kemil ${ }^{1}$	A	mm ${ }^{2}$	AWG/ kemil ${ }^{11}$	A	mm^{2}	AWG/ kcmil ${ }^{1}$

Mains voltage: 400 V
Supply voltage ($\mathbf{5 0} / 60 \mathrm{~Hz}$) ULN $380(-10 \%)-480(+10 \%)$ V
$\mathbf{U}_{\mathrm{e}} 400 \mathrm{VAC}$, three-phase / $\mathbf{U}_{2} 400 \mathrm{VAC}$, three-phase

VSA 342D2FB-...	FS2	8	8	3.5	1.5	14	2.2	1.5	14
VSA 344D1FB-...	FS2	8	8	6	1.5	14	4.1	1.5	14
VSA 345D8FB-...	FS2	8	8	7.5	1.5	14	5.8	1.5	14
VSA 349D5FB-...	FS2	8	8	12	2.5	14	9.5	1.5	14
VSA 34014FB-...	FS3	8	8	17	4	10	14	1.5	12
VSA 34018FB-...	FS3	8	8	22	6	10	18	2.5	10
VSA 34024FB-A20C	FS3	8	8	28	8	8	24	4	10
VSA 34024FB-B55C	FS4	16	5	28	10	5	24	4	10
VSA 34030FB-B55C	FS4	16	5	34	16	8	30	6	8
VSA 34039FB-B55C	FS4	16	5	44	16	6	39	10	8
VSA 34046FB-B55C	FS4	16	5	52	16	5	46	10	6
VSA 34061FB-B55C	FS5	35	2	66	25	4	61	16	4
VSA 34072FB-B55C	FS5	35	2	77	35	3	72	25	3
VSA 34090FB-B55C	FS6	150	300	103	50	1	90	35	2
VSA 34110FB-B55C	FS6	150	300	126	70	1/0	110	50	1/0
VSA 34150FB-B55C	FS6	150	300	165	95	3/0	150	70	3/0
VSA 34180FB-B55C	FS6	150	300	192	120	4/0	180	95	4/0
VSA 34202FB-B55C	FS7	150	300	211	185	300	202	120	250
VSA 34240FB-B55C	FS7	150	300	241	185	350	240	150	350
VSA 34302FB-B55C	FS7	150	300	299	2×95	600	302	2×70	500
VSA 34370FB-B20C	FS8	240	450	377	2×150	750	370	2×95	750
VSA 34450FB-B20C	FS8	240	450	459	2×150	1250	450	2×120	1250

[^4]Table 29: Cable cross-sections - voltage class 575 V

Device Type	Frame size	Maximum terminal capacity		Input current ILN	Feeder unit cross-sectional area		Output current I_{e}	Motor connection cross-sectional area ${ }^{2 /}$	
					L1/L, L2/N, L3, PE			U, V, W, PE	
		mm^{2}	AWG/ kcmil ${ }^{11}$	A	mm ${ }^{2}$	AWG/ kcmil ${ }^{1}$	A	mm^{2}	AWG/ kemil ${ }^{1}$

Mains voltage: 575 V

Supply voltage ($50 / 60 \mathrm{~Hz}$) ULN $500(-10 \%)-600(+10 \%)$ V
$\mathbf{U}_{\mathrm{e}} 575 \mathrm{~V}$ AC, three-phase / $\mathbf{U}_{2} 575 \mathrm{~V} \mathrm{AC}$, three-phase

VSA 352D1NB-...	FS2	8	8	3.5	1.5	14	2.1	1.5	14
VSA 353D1NB-...	FS2	8	8	4.5	1.5	14	3.1	1.5	14
VSA 354D1NB-...	FS2	8	8	5	1.5	14	4.1	1.5	14
VSA 356D5NB-...	FS2	8	8	9	1.5	14	6.5	1.5	14
VSA 359D0NB-...	FS2	8	8	12	2.5	14	9	1.5	14
VSA 35012NB-...	FS3	8	8	15	4	12	12	1.5	14
VSA 35017NB-...	FS3	8	8	21	6	10	17	2.5	10
VSA 35022NB-A20C	FS3	8	8	26	10	8	22	4	10
VSA 35022NB-B55C	FS4	16	5	26	10	8	22	4	10
VSA 35028NB-B55C	FS4	16	5	33	16	8	28	6	8
VSA 35034NB-B55C	FS4	16	5	40	16	6	34	6	8
VSA 35043NB-B55C	FS4	16	5	49	16	6	43	10	6
VSA 35054NB-B55C	FS5	35	2	60	25	4	54	16	4
VSA 35065NB-B55C	FS5	35	2	71	35	3	65	25	4
VSA 35078NB-B55C	FS6	150	300	91	50	2	78	25	3
VSA 35105NB-B55C	FS6	150	300	121	70	1/0	105	50	1/0
VSA 35130NB-B55C	FS6	150	300	143	70	2/0	130	70	2/0
VSA 35150NB-B55C	FS6	150	300	158	95	2/0	150	70	3/0

1) $A W G=$ American wire gauge
kcmil $=$ Thousands of circular mils ($1 \mathrm{kcmil}=0.5067 \mathrm{~mm}^{2}$)
2) Maximum motor cable length $=100 \mathrm{~m}$ (330 ft)

6.5 Fuses

The circuit-breakers and fuses listed below are examples and can be used without additional measures. If you use other circuit-breakers and/or fuses, make sure to take their protection characteristic and operational voltage into account. When using other circuit-breakers, it may be necessary to also use fuses depending on the circuit-breaker's model, design, and settings. There may also be limitations concerning the short-circuit capacity and the supply network's characteristic, and these must also be taken into account when selecting circuit-breakers and/or fuses.

Table 30: Protective devices

	Description
	Miniature circuit breakers FAZ-B...1N: 1 pole +N FAZ-B...2: 2 pole FAZ-B...3: 3 pole Rated operating voltage: $230 / 400 \mathrm{VAC}$ Switching capacity: 15 kA

Table 31: Specified fuses - voltage class 230 V

Device Type	Input current	Fuse or miniature circuit-breaker	
	ILN	IEC (Type B or gG)	UL (Class CC or J)
	A	AJohnson Controls type	AJohnson Controls type

Mains voltage: 230 V

Supply voltage ($\mathbf{5 0} / 60 \mathrm{~Hz}$) ULN $200(-10 \%)-240(+10 \%)$ V
$\mathbf{U}_{\mathrm{e}} 230 \mathrm{~V} \mathrm{AC}$, single-phase / $\mathbf{U}_{2} 230 \mathrm{~V} \mathrm{AC}$, three-phase
(1)
(2), 2 phase
(4)
(5)

VSA 124D3FB-...	9	16	FAZ-B16/1N	FAZ-B16/2	Z-DII/SE-16A/GG	15	LPJ-15SP
VSA 127D0FB-...	13	20	FAZ-B20/1N	FAZ-B20/2	Z-DII/SE-20A/GG	20	LPJ-20SP
VSA 12011FB-...	19	25	FAZ-B25/1N	FAZ-B25/2	Z-DII/SE-25A/GG	25	LPJ-25SP

Mains voltage: 230 V
Supply voltage ($50 / 60 \mathrm{~Hz}$) $\mathrm{U}_{\mathrm{LN}} 200(-10 \%)$ - 240 (+10 \%) V
$\mathbf{U}_{\mathrm{e}} 230 \mathrm{~V} \mathrm{AC}$, three-phase / $\mathbf{U}_{2} 230 \mathrm{~V} \mathrm{AC}$, three-phase

			(1)	(2), (3)	(4), (6)		(5)
VSA 324D3FB-	6	10	FAZ-B10/3	PKMO-10	Z-DII/SE-10A/GG	10	LPJ-10SP
VSA 327DOFB-	11	16	FAZ-B16/3	PKMO-16	Z-DII/SE-16A/GG	15	LPJ-15SP
VSA 32011FB-.	13	16	FAZ-B16/3	PKMO-16	Z-DII/SE-16A/GG	17.5	LPJ-171⁄2SP
VSA 32018FB-.	21	32	FAZ-B32/3	PKMO-32	Z-DII/SE-35A/GG	30	LPJ-30SP
VSA 32024FB-A20C	26	40	FAZ-B40/3	PKZM4-40	Z-DIII/SE-50A/GG	40	LPJ-40SP
VSA 32024FB-B55C	27	40	FAZ-B40/3	PKZM4-40	Z-DIII/SE-50A/GG	40	LPJ-40SP
VSA 32030FB-B55C	33	50	FAZ-B50/3	PKZM4-50	Z-DIII/SE-50A/GG	50	LPJ-50SP
VSA 32046FB-B55C	50	80	-	NZMC1-S80	80NHGOOOB-400	70	LPJ-70SP
VSA 32061FB-B55C	64	100	-	NZMC1-S100	100HGOOOB-400	90	LPJ-90SP
VSA 32072FB-B55C	74	125	-	NZMC2-S125	125NHGOOB-400	110	LPJ-110SP
VSA 32090FB-B55C	99	160	-	NZMC2-S160	160NHGO0B-400	150	LPJ-150SP
VSA 32110FB-B55C	121	160	-	NZMC2-S160	160NHGOOB-400	175	LPJ-175SP
VSA 32150FB-B55C	160	250	-	NZMC3-S250	250NHG1B-400	225	LPJ-225SP
VSA 32180FB-B55C	188	250	-	NZMC3-S250	250NHG1B-400	250	LPJ-250SP
VSA 32202FB-B55C	207	300	-	NZMC3-S320	315NHG2B-400	300	LPJ-300SP
VSA 32248FB-B55C	246	400	-	NZMC3-S400	400NHG2B-400	350	LPJ-350SP

Note: Numbers (1), (2), (3), (4), (5), (6) refer to the drawings in Table 30.

6 Technical Data
6.5 Fuses

Table 32: Specified fuses - voltage class 400 V

| Device Type | Input
 current | Fuse or miniature circuit-breaker | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | ILN | IEC (Type B or gG) | UL (Class CC or J) |

Mains voltage: 400 V

Supply voltage ($50 / 60 \mathrm{~Hz}$) ULN $380(-10 \%)-480$ (+10 \%) V
$\mathrm{U}_{\mathrm{e}} 400 \mathrm{VAC}$, three-phase / $\mathrm{U}_{2} 400 \mathrm{VAC}$, three-phase

			(1) max. 400 V	(2), 3)	(4), (6)		(5)
VSA 342D2FB-...	3.5	6	FAZ-B6/3	PKMO-6.3	Z-DII/SE-6A/GG	6	LPJ-6SP
VSA 344D1FB-...	6	10	FAZ-B10/3	PKMO-10	Z-DII/SE-10A/GG	10	LPJ-10SP
VSA 345D8FB-...	7.5	10	FAZ-B10/3	PKMO-10	Z-DII/SE-10A/GG	10	LPJ-10SP
VSA 349D5FB-...	12	16	FAZ-B16/3	PKM0-16	Z-DII/SE-16A/GG	15	LPJ-15SP
VSA 34014FB-.	17	25	FAZ-B25/3	PKMO-25	Z-DII/SE-25A/GG	25	LPJ-25SP
VSA 34018FB-.	22	32	FAZ-B32/3	PKM0-32	Z-DIII/SE-35A/GG	30	LPJ-30SP
VSA 34024FB-.	28	40	FAZ-B40/3	PKZM4-40	Z-DIII/SE-50A/GG	40	LPJ-40SP
VSA 34030FB-B55C	34	50	FAZ-B50/3	PKZM4-50	Z-DIII/SE-50A/GG	50	LPJ-50SP
VSA 34039FB-B55C	44	63	FAZ-B63/3	PKZM4-58	Z-DIII/SE-63A/GG	60	LPJ-60SP
VSA 34046FB-B55C	52	80	-	NZMC1-S80	80NHGO00B-400	70	LPJ-70SP
VSA 34061FB-B55C	66	80	-	NZMC1-S80	80NHGO00B-400	80	LPJ-80SP
VSA 34072FB-B55C	77	100	-	NZMC1-S100	100HG000B-400	100	LPJ-100SP
VSA 34090FB-B55C	103	125	-	NZMC2-S125	125NHGOOB-400	125	LPJ-125SP
VSA 34110FB-B55C	126	160	-	NZMC2-S160	160NHG00B-400	150	LPJ-150SP
VSA 34150FB-B55C	165	200	-	NZMC2-S200	200NHG1B-400	200	LPJ-200SP
VSA 34180FB-B55C	192	250	-	NZMC3-S250	250NHG1B-400	250	LPJ-250SP
VSA 34202FB-B55C	211	300	-	NZMC3-S320	315NHG2B-400	300	LPJ-300SP
VSA 34240FB-B55C	241	400	-	NZMC3-S400	400NHG2B-400	350	LPJ-350SP
VSA 34302FB-B55C	299	400	-	NZMC3-S400	400NHG2B-400	400	LPJ-400SP
VSA 34370FB-B20C	377	500	-	NZMC3-S500	500NHG3B-400	500	LPJ-500SP
VSA 34450FB-B20C	459	600	-	NZMN3-AE630	630NHG3B-400	600	LPJ-600SP

Note: Numbers (1), (2), (3), (4), (5), (6) refer to the drawings in Table 30.

Table 33: Specified fuses - voltage class 575 V

| Device Type | Input
 current | Fuse or miniature circuit-breaker | |
| :--- | :--- | :--- | :--- | :--- |
| | LLN | IEC (Type B or gG) | UL (Class CC or J) |
| | A | AJohnson Controls
 type | AJohnson Controls
 type |

Mains voltage: 575 V

Supply voltage ($\mathbf{5 0} / 60 \mathrm{~Hz}$) ULN $500(-10 \%)-600(+10 \%)$ V
$\mathbf{U}_{\mathrm{e}} 575$ V AC, three-phase / $\mathbf{U}_{2} 575$ V AC, three-phase

			(2), (3)	(6) max. 500 V	(6)		(5)
VSA 352D1NB-...	3.5	6	PKM0-6.3	6NHGO00B	6NHG000B-690	6	LPJ-6SP
VSA 353D1NB-...	4.5	10	PKM0-10	10NHGO00B	10NHG000B-690	6	LPJ-6SP
VSA 354D1NB-...	5	10	PKM0-10	10NHG000B	10NHG000B-690	10	LPJ-10SP
VSA 356D5NB-...	9	16	PKMO-16	16NHGO00B	16NHGO000B-690	15	LPJ-15SP
VSA 359D0NB-...	12	16	PKMO-16	16NHG000B	16NHG000B-690	15	LPJ-15SP
VSA 35012NB-...	15	20	PKMO-20	20NHGO00B	20NHG000B-690	20	LPJ-20SP
VSA 35017NB-...	21	32	PKMO-32	32NHG000B	32NHG000B-690	30	LPJ-30SP
VSA 35022NB-...	26	40	PKZM4-40	40NHGOOOB	40NHG000B-690	35	LPJ-35SP
VSA 35028NB-B55C	33	50	PKZM4-50	50NHGO00B	50NHG000B-690	45	LPJ-45SP
VSA 35034NB-B55C	40	63	NZMC1-S63	63NHG000B	63NHG000B-690	60	LPJ-60SP
VSA 35043NB-B55C	49	63	NZMC1-S80	63NHG000B	63NHG000B-690	70	LPJ-70SP
VSA 35054NB-B55C	60	80	NZMC1-S80	80NHGOOOB	80NHGO0B-690	80	LPJ-80SP
VSA 35065NB-B55C	71	100	NZMC1-S100	100NHGO00B	100NHG00B-690	100	LPJ-100SP
VSA 35078NB-B55C	91	125	NZMC2-S125	125NHGOOB	125NHG00B-690	125	LPJ-125SP
VSA 35105NB-B55C	121	160	NZMC2-S160	160NHG00B	160NHG00B-660	150	LPJ-150SP
VSA 35130NB-B55C	143	160	NZMC2-S160	160NHGO0B	160NHG00B-660	175	LPJ-175SP
VSA 35150NB-B55C	158	200	NZMC2-S200	200NHG1B	200NHG1B-690	175	LPJ-175SP

Note: Numbers (1), (2), (3), (4), (5), (6) refer to the drawings in Table 30.

6 Technical Data
6.6 Mains contactors

6.6 Mains contactors

P1DILEM

DILEM

P1DILEM

Figure 98: Mains contactor at single-phase connection (VSA 12...)

Table 34: Mains contactors - VSA voltage class 230 V (single-phase)

Device Type	Input current	Mains contactor (thermal current AC-1)			
	lıN	Type max. $50^{\circ} \mathrm{C}$ and IEC		Type max. $40^{\circ} \mathrm{C}$ and UL	A
	A		A		
Mains voltage: 230 V Supply voltage ($50 / 60 \mathrm{~Hz}$) ULN $200(-10 \%)-240(+10 \%)$ V $\mathbf{U}_{\mathrm{e}} 230 \mathrm{~V} \mathrm{AC}$, single-phase / $\mathbf{U}_{2} 230 \mathrm{VAC}$, three-phase					
VSA 124D3FB-...	9	DILEM-...P1DILEM	50	DILEM-...+P1DILEM	50
VSA 127DOFB-...	13	DILEM-...PP1DILEM	50	DILEM-...+P1DILEM	50
VSA 12011FB-...	19	DILEM-...+P1DILEM	50	DILEM-...+P1DILEM	50

Table 35: Mains contactors - VSA voltage class 230 V
(three-phase)

Device Type	Input current	Mains contactor (thermal current AC-1)			
	lıN	Type max. $50^{\circ} \mathrm{C}$ and IEC		Type $\max .40^{\circ} \mathrm{C}$ and UL	A
	A	A			

Mains voltage: 230 V
Supply voltage ($50 / 60 \mathrm{~Hz}$) ULN $200(-10 \%)-240(+10 \%)$ V
$\mathbf{U}_{\mathrm{e}} 230 \mathrm{VAC}$, three-phase / $\mathbf{U}_{2} 230 \mathrm{VAC}$, three-phase

VSA 324D3FB-.	6	DILEM-...	20	DILEM-...	20
VSA 327DOFB-.	11	DILEM-...	20	DILEM-...	20
VSA 32011FB-...	13	DILEM-.	20	DILEM-...	20
VSA 32018FB-...	21	DILM17-.	38	DILM17-..	40
VSA 32024FB-A20C	26	DILM17-.	38	DILM17-...	40
VSA 32024FB-B55C	27	DILM17-.	38	DILM17-...	40
VSA 32030FB-B55C	33	DILM17-..	38	DILM25-...	45
VSA 32046FB-B55C	50	DILM40-..	57	DILM50-...	80
VSA 32061FB-B55C	64	DILM50-...	71	DILM50-...	80
VSA 32072FB-B55C	74	DILM65-..	88	DILM80-...	110
VSA 32090FB-B55C	99	DILM95-...	125	DILM95-...	130
VSA 32110FB-B55C	121	DILM95-.	125	DILM115-...	160
VSA 32150FB-B55C	160	DILM150-...	180	DILM170-...	225
VSA 32180FB-B55C	188	DILM170-...	200	DILM185A-...	337
VSA 32202FB-B55C	207	DILM185A-	301	DILM185A-...	337
VSA 32248FB-B55C	246	DILM185A-.	301	DILM185A-...	337

Table 36: Mains contactor - VSA voltage class 400 V

Device Type	Input current	Mains contactor (thermal current AC-1)			
	lıN	Type max. $50^{\circ} \mathrm{C}$ and IEC		Type $\max .40^{\circ} \mathrm{C}$ and UL	A
	A	A			

Mains voltage: 400 V
Supply voltage ($50 / 60 \mathrm{~Hz}$) ULN $380(-10 \%)-480(+10 \%)$ V
$\mathbf{U}_{\mathrm{e}} 400 \mathrm{~V}$ AC, three-phase / $\mathrm{U}_{2} 400 \mathrm{~V} \mathrm{AC}$, three-phase

VSA 342D2FB-...	3.5	DILEM-...	20	DILEM-...	20
VSA 344D1FB-...	6	DILEM-...	20	DILEM-...	20
VSA 345D8FB-...	7.5	DILEM-...	20	DILEM-...	20
VSA 349D5FB-...	12	DILEM-...	20	DILEM-...	20
VSA 34014FB-...	17	DILEM-...	20	DILM7-...	22
VSA 34018FB-...	22	DILM17-...	38	DILM17-...	40
VSA 34024FB-...	28	DILM17-...	38	DILM17-...	40
VSA 34030FB-B55C	34	DILM17-...	38	DILM25-...	45
VSA 34039FB-B55C	44	DILM40-...	57	DILM40-...	60
VSA 34046FB-B55C	52	DILM40-...	57	DILM50-...	80
VSA 34061FB-B55C	66	DILM50-...	71	DILM65-...	98
VSA 34072FB-B55C	77	DILM65-...	88	DILM65-...	98
VSA 34090FB-B55C	103	DILM95-...	125	DILM95-...	130
VSA 34110FB-B55C	126	DILM115-.	142	DILM150-...	180
VSA 34150FB-B55C	165	DILM150-...	180	DILM170-...	225
VSA 34180FB-B55C	192	DILM185A-...	301	DILM185A-...	337
VSA 34202FB-B55C	211	DILM185A-...	301	DILM185A-...	337
VSA 34240FB-B55C	241	DILM185A-...	301	DILM185A-...	337
VSA 34302FB-B55C	299	DILM185A-...	301	DILM250-...	400
VSA 34370FB-B20C ${ }^{1)}$	377	DILM300A-...	385	DILM400-...	612
VSA 34450FB-B20C2)	459	DILM400-...	548	DILM400-...	612

If it is not guaranteed that the system percentage impedance is greater than or equal to 1%, a mains choke must be connected.
Your u_{k} value should fall between 1 and 4%.
Examples:

1) VSA $34370 F B-320 C$ with mains choke DX-LN3-370
2) VSA 34450FB-320C with mains choke DX-LN3-450

Table 37: Mains contactor - VSA voltage class 575 V

Device Type	Input current	Mains contactor (thermal current AC-1)						
	ILN	Type max. $50^{\circ} \mathrm{C}$ and IEC	A	Type $\max .40^{\circ} \mathrm{C}$ and UL	A			
	A							
Mains voltage: 575 V Supply voltage ($50 / 60 \mathrm{~Hz}$) ULN $500(-10 \%)$ - $600(+10 \%)$ V $\mathbf{U}_{\mathrm{e}} 575$ V AC, three-phase / $\mathbf{U}_{\mathbf{2}} 575 \mathrm{~V}$ AC, three-phase								
VSA 352D1NB-...	3.5	DILEM-.	20	DILEM-.	20			
VSA 353D1NB-...	4.5	DILEM-.	20	DILEM-.	20			
VSA 354D1NB-...	5	DILEM-.	20	DILEM-.	20			
VSA 356D5NB-...	9	DILEM-.	20	DILEM-.	20			
VSA 359DONB-...	12	DILEM-.	20	DILEM-.	20			
VSA 35012NB-...	15	DILEM-.	20	DILEM-.	20			
VSA 35017NB-...	21	DILM7-.	21	DILM17-.	40			
VSA 35022NB-...	26	DILM17-.	38	DILM17-.	40			
VSA 35028NB-B55C	33	DILM17-.	38	DILM25-	45			
VSA 35034NB-B55C	40	DILM25-.	43	DILM40-	60			
VSA 35043NB-B55C	49	DILM40-.	57	DILM50-	80			
VSA 35054NB-B55C	60	DILM50-.	71	DILM50-.	80			
VSA 35065NB-B55C	71	DILM50-.	71	DILM65-.	98			
VSA 35078NB-B55C	91	DILM80-.	98	DILM95-.	130			
VSA 35105NB-B55C	121	DILM95-.	125	DILM115-.	160			
VSA 35130NB-B55C	143	DILM150-...	180	DILM150-.	190			
VSA 35150NB-B55C	158	DILM150-..	180	DILM170-.	225			

6 Technical Data
6.7 Mains chokes

6.7 Mains chokes

DX-LN1...

Figure 99:DEX-LN1... mains chokes (single-phase)
Table 38: Assigned mains chokes - VSA voltage class 230 V (single-phase)

Device Type	Input current	Mains choke ULN max. $240 \mathrm{~V}+10 \%$ $50 / 60 \mathrm{~Hz} \pm 10 \%$	
	ILN	max.	
	A	Type	A

Mains voltage: 230 V
Supply voltage (50/60 Hz) ULN $200(-10 \%)-240(+10 \%) V$
$\mathbf{U}_{\mathrm{e}} 230 \mathrm{~V}$ AC, single-phase / $\mathbf{U}_{2} 230 \mathrm{VAC}$, three-phase

VSA 124D3FB-...	g	DX-LN1-013	13
VSA 127DOFB-...	13	DX-LN1-018	18
VSA 12011FB-...	19	DX-LN1-024	24

DX-LN3...

Figure 100:Mains chokes DEX-LN3... (three-phase)
Table 39: Assigned mains chokes - VSA voltage class 230 V (three-phase)

Device Type	Input curren	Mains choke ULN max. $500 \mathrm{~V}+\mathbf{1 0 \%}, 50 / 60 \mathrm{~Hz} \pm 10 \%$			
	lıN	max. $40{ }^{\circ} \mathrm{C}$		max. $50{ }^{\circ} \mathrm{C}$	
	A	Type	A	Type	A

Mains voltage: 230 V
Supply voltage ($50 / 60 \mathrm{~Hz}$) $\mathrm{U}_{\mathrm{LN}} 200(-10 \%)-240(+10 \%)$ V
$\mathbf{U}_{\mathrm{e}} \mathbf{2 3 0}$ V AC, three-phase / $\mathbf{U}_{2} 230 \mathrm{VAC}$, three-phase

VSA 324D3FB-...	6	DX-LN3-006	6	DX-LN3-006	6
VSA 327D0FB-...	11	DX-LN3-010	10	DX-LN3-010	10
VSA 32011FB-...	13	DX-LN3-016	16	DX-LN3-016	16
VSA 32018FB-...	21	DX-LN3-025	25	DX-LN3-025	25
VSA 32024FB-A20C	26	DX-LN3-025	25	DX-LN3-040	40
VSA 32024FB-B55C	27	DX-LN3-040	40	DX-LN3-040	40
VSA 32030FB-B55C	33	DX-LN3-040	40	DX-LN3-040	40
VSA 32046FB-B55C	50	DX-LN3-050	50	DX-LN3-080	80
VSA 32061FB-B55C¹)	64	DX-LN3-080	80	DX-LN3-080	80
VSA 32072FB-B55C1)	74	DX-LN3-080	80	DX-LN3-080	80
VSA 32090FB-B55C1)	99	DX-LN3-100	100	DX-LN3-120	120
VSA 32110FB-B55C1)	121	DX-LN3-120	120	DX-LN3-160	160
VSA 32150FB-B55C1)	160	DX-LN3-160	160	DX-LN3-200	200
VSA 32180FB-B55C1)	188	DX-LN3-200	200	DX-LN3-200	200
VSA 32202FB-B55C1)	207	DX-LN3-250	250	DX-LN3-250	250
VSA 32248FB-B55C1)	246	DX-LN3-250	250	DX-LN3-300	300

1) VSA variable frequency drive with DC link choke

Table 40: Assigned mains chokes - VSA voltage class 400 V (three-phase)

Device Type	Input current	Mains choke ULN max. $500 \mathrm{~V}+\mathbf{1 0 \%}, 50 / 60 \mathrm{~Hz} \pm 10 \%$			
		$\max .40{ }^{\circ} \mathrm{C}$		$\max 50^{\circ} \mathrm{C}$	
	A	Type	A	Type	A
Mains voltage: 400 V Supply voltage ($50 / 60 \mathrm{~Hz}$) ULN 380 (-10\%) - 480 (+10 \%) V $\mathrm{U}_{\mathrm{e}} 400 \mathrm{~V} \mathrm{AC}$, three-phase / $\mathrm{U}_{2} 400 \mathrm{VAC}$, three-phase					
VSA 342D2FB-...	3.5	DX-LN3-006	6	DX-LN3-006	6
VSA 344D1FB-...	6	DX-LN3-006	6	DX-LN3-006	6
VSA 345D8FB-...	7.5	DX-LN3-010	10	DX-LN3-010	10
VSA 349D5FB-...	12	DX-LN3-016	16	DX-LN3-016	16
VSA 34014FB-...	17	DX-LN3-025	25	DX-LN3-025	25
VSA 34018FB-...	22	DX-LN3-025	25	DX-LN3-025	25
VSA 34024FB-...	28	DX-LN3-040	40	DX-LN3-040	40
VSA 34030FB-B55C	34	DX-LN3-040	40	DX-LN3-040	40
VSA 34039FB-B55C	44	DX-LN3-050	50	DX-LN3-050	50
VSA 34046FB-B55C	52	DX-LN3-050	50	DX-LN3-080	80
VSA 34061FB-B55C ${ }^{11}$	66	DX-LN3-060	60	DX-LN3-080	80
VSA 34072FB-B55C1)	77	DX-LN3-080	80	DX-LN3-080	80
VSA 34090FB-B55C1)	103	DX-LN3-100	100	DX-LN3-120	120
VSA 34110FB-B55C1)	126	DX-LN3-120	120	DX-LN3-160	160
VSA 34150FB-B55C1)	165	DX-LN3-160	160	DX-LN3-200	200
VSA 34180FB-B55C1)	192	DX-LN3-200	200	DX-LN3-200	200
VSA 34202FB-B55C¹)	211	DX-LN3-250	250	DX-LN3-250	250
VSA 34240FB-B55C¹)	241	DX-LN3-250	250	DX-LN3-300	300
VSA 34302FB-B55C1)	299	DX-LN3-300	300	DX-LN3-370	370
VSA 34370FB-B20C2)	377	DX-LN3-370	370	DX-LN3-450	450
VSA 34450FB-B20C2)	459	DX-LN3-450	450	Please enquire	N/A

1) VSA variable frequency drive with DC link choke
2) If it is not guaranteed that the system percentage impedance is greater than or equal to 1%, a mains choke must be connected. Your uk value should fall between 1 and 4%.

Table 41: Assigned mains chokes - VSA voltage class 500 V (three-phase)

Device Type	Input current	Mains choke ULN max. $500 \mathrm{~V}+10 \%, 50 / 60 \mathrm{~Hz} \pm 10 \%$			
		$\max .40{ }^{\circ} \mathrm{C}$		max. $50{ }^{\circ} \mathrm{C}$	
	A	Type	A	Type	A
Mains voltage: 500 V Supply voltage ($\mathbf{5 0} / 60 \mathrm{~Hz}$) $\mathrm{U}_{\mathrm{LN}} 500(-10 \%)$ - $\mathbf{6 0 0}(+10 \%)$ V $\mathbf{U}_{\mathrm{e}} 500 \mathrm{~V} \mathrm{AC}$, three-phase / $\mathbf{U}_{\mathbf{2}} 500 \mathrm{VAC}$, three-phase					
VSA 352D1NB-...	3.5	DX-LN3-006	6	DX-LN3-006	6
VSA 353D1NB-...	4.5	DX-LN3-006	6	DX-LN3-006	6
VSA 354D1NB-...	5	DX-LN3-006	6	DX-LN3-006	6
VSA 356D5NB-...	9	DX-LN3-010	10	DX-LN3-010	10
VSA 359DONB-...	12	DX-LN3-016	16	DX-LN3-016	16
VSA 35012NB-...	15	DX-LN3-016	16	DX-LN3-016	16
VSA 35017NB-...	21	DX-LN3-025	25	DX-LN3-025	25
VSA 35022NB-...	26	DX-LN3-025	25	DX-LN3-040	40
VSA 35028NB-B55C	33	DX-LN3-040	40	DX-LN3-040	40
VSA 35034NB-B55C	40	DX-LN3-040	40	DX-LN3-050	50
VSA 35043NB-B55C1)	49	DX-LN3-050	50	DX-LN3-050	50
VSA 35054NB-B55C1)	60	DX-LN3-060	60	DX-LN3-080	80
VSA 35065NB-B55C1)	71	DX-LN3-080	80	DX-LN3-080	80
VSA 35078NB-B55C1)	91	DX-LN3-100	100	DX-LN3-100	100
VSA 35105NB-B55C1)	121	DX-LN3-120	120	DX-LN3-160	160
VSA 35130NB-B55C1)	143	DX-LN3-160	160	DX-LN3-160	160
VSA 35150NB-B55C ${ }^{1 /}$	158	DX-LN3-160	160	DX-LN3-200	200

\longrightarrow Please enquire for mains chokes for mains voltages $>500 \mathrm{~V}$.
6.8 Radio interference suppression filter

6.8 Radio interference suppression filter

Figure 101:DX-EMC...-FS... (base-mounted filters with prefabricated connection cables) and DX-EMC... (side-mounting filters) external radio interference suppression filters

DX-EMC... external radio interference suppression filters should always be installed in the immediate proximity of the corresponding variable frequency drive. The connection cables between the radio interference suppression filter and the variable frequency drive should not be longer than 300 to 500 mm if they are installed without screening.
$\longrightarrow \quad$ The DX-EMC... radio interference suppression filters with an IP20 degree of protection listed below are intended for installation in a control panel.
$\longrightarrow \begin{aligned} & \text { Sizes DX-EMC34-400 } \ldots \text { and DX-EMC34-750 } \ldots \text { have a degree of } \\ & \text { protection of IP00 }\end{aligned}$ protection of IP00.
\longrightarrow Please enquire for higher degrees of protection.
$\longrightarrow \quad$ For more information and technical data on DX-EMC... radio interference suppression filters, please refer to instructional leaflets ILO4012017Z and IL04012018Z.
$\longrightarrow \quad$ The maximum motor cable lengths for the C1, C2, and C3 interference categories listed below are standardized recommended values. They apply to the adjustable switching frequencies (fpWm) of 4 to 16 kHz (parameter P2-24) in the corresponding ratings.

Voltage class: 230 V
Mains voltage ($\mathbf{5 0} / 60 \mathrm{~Hz}$) ULN $200(-10 \%)$ - 240 (+10 \%) V
$\mathbf{U}_{\mathrm{e}} 230 \mathrm{~V} \mathrm{AC}$, single-phase / $\mathbf{U}_{2} 230 \mathrm{~V} \mathrm{AC}$, three-phase
Table 42: Assigned radio interference suppression filter (single-phase)

Device Type	Frame size	Input current	Radio interference suppression filter U_{LN} : max. $250 \mathrm{~V}+0 \%, 50 / 60 \mathrm{~Hz} \pm 10 \%$, maximum ambient air temperature: $50{ }^{\circ} \mathrm{C}$					
			Type	Ampere rating	Leakage current (IEC38 +10 \%)	max. motor cable length		
						C1	C2	C3
		lin		I_{e}	IPE	1	1	1
		A		A	A	m	m	m
VSA 124D3FB-A20C	FS2	9	DX-EMC12-014-FS2	14	8	25	50	75
VSA 127DOFB-A20C	FS2	13	DX-EMC12-014-FS2	14	8	25	50	75
VSA 12011FB-A20C	FS2	19	DX-EMC12-025-FS2	25	8	25	75	100

\longrightarrow DX-EMC...-FS2: base-mounted filter for frame size FS2

6 Technical Data
6.8 Radio interference suppression filter

Voltage class: 230 V

Mains voltage ($\mathbf{5 0 / 6 0} \mathrm{Hz}$) ULN $200(-10 \%)-240(+10 \%) V$
$\mathbf{U}_{\mathrm{e}} 230$ V AC, three-phase / $\mathbf{U}_{2} 230$ V AC, three-phase

Table 43: Assigned radio interference suppression filter (three-phase)

Device Type	Frame size	Input current	Radio interference suppression filter U_{LN} : max. $520 \mathrm{~V}+0 \%, 50 / 60 \mathrm{~Hz} \pm 10 \%$, maximum ambient air temperature: $50^{\circ} \mathrm{C}$					
			Type	Ampere rating	Leakage current (IEC38 +10 \%)	max. motor cable length		
						C1	C2	C3
		ILN		I_{e}	IPE	1	I	1
		A		A	A	m	m	m
VSA 324D3FB-A20C	FS2	6	DX-EMC34-008	8	21	25	50	75
			DX-EMC34-008-L	8	6	5	25	50
			DX-EMC34-011-FS2	16	21	25	50	75
			DX-EMC34-011-FS2-L	16	6	5	25	50
VSA 327DOFB-A20C	FS2	11	DX-EMC34-016	16	21	25	50	75
			DX-EMC34-016-L	16	6	5	25	50
			DX-EMC34-011-FS2	11	21	25	50	75
			DX-EMC34-011-FS2-L	11	6	5	25	50
VSA 32011FB-A20C	FS2	13	DX-EMC34-016	16	21	25	75	100
			DX-EMC34-016-L	16	6	15	25	30
			DX-EMC34-025-FS32)	25	21	25	50	75
			DX-EMC34-025-FS3-L ${ }^{2)}$	25	6	5	25	50
VSA 32018FB-A20C	FS3	21	DX-EMC34-030	30	29	25	50	75
			DX-EMC34-030-L	30	6.5	25	25	50
			DX-EMC34-025-FS3	25	21	25	50	75
			DX-EMC34-025-FS3-L	25	6	25	25	50
VSA 32024FB-A20C	FS3	26	DX-EMC34-030	30	29	25	100	125
			DX-EMC34-030-L	30	6.5	25	35	50
			DX-EMC34-031-FS42)	31	21	25	50	75
			DX-EMC34-031-FS4-L2)	31	6	25	25	50
VSA 32024FB-B55C	FS4	27	DX-EMC34-030	30	29	25	50	75
			DX-EMC34-030-L	30	6.5	25	50	75
			DX-EMC34-031-FS4	31	20	25	50	75
			DX-EMC34-031-FS4-L	31	6	25	50	75
VSA 32046FB-B55C	FS4	50	DX-EMC34-055	55	30	25	100	125
			DX-EMC34-055-L	55	6.5	25	35	50
			DX-EMC34-075-FS5 2)	75	20	25	50	75
			DX-EMC34-075-FS5-L ${ }^{2)}$	75	6	25	25	50

Device Type	Frame size	Input current	Radio interference suppression filter U_{LN} : max. $520 \mathrm{~V}+0 \%, 50 / 60 \mathrm{~Hz} \pm 10 \%$, maximum ambient air temperature: $50^{\circ} \mathrm{C}$					
			Type	Ampere rating	Leakage current (IEC38 +10 \%)	max. motor cable length		
						C1	C2	C3
		ILN		I_{e}	$I_{\text {PE }}$	1	1	1
		A		A	A	m	m	m
VSA 32061FB-B55C1)	FS5	64	DX-EMC34-075	75	22	25	50	75
			DX-EMC34-075-L	75	6.5	25	50	75
			DX-EMC34-075-FS5	75	22	25	50	75
			DX-EMC34-075-FS5-L	75	6.5	25	50	75
VSA 32072FB-B55C1)	FS5	74	DX-EMC34-075	75	22	50	50	75
			DX-EMC34-075-L	75	6.5	20	50	75
			DX-EMC34-075-FS5	75	22	25	50	75
			DX-EMC34-075-FS5-L	75	6.5	5	25	50
VSA 32110FB-B55C ${ }^{1)}$	FS6	121	DX-EMC34-130	130	22	25	50	75
			DX-EMC34-130-L	130	6.5	5	25	50
VSA 32150FB-B55C ${ }^{11}$	FS6	160	DX-EMC34-180	180	31	25	50	75
			DX-EMC34-180-L	180	6.5	5	25	50
VSA 32180FB-B55C1)	FS6	188	DX-EMC34-180	180	31	25	50	75
			DX-EMC34-180-L	180	7	5	25	50
VSA 32202FB-B55C ${ }^{1)}$	FS7	207	DX-EMC34-250	250	37	25	50	75
			DX-EMC34-250-L	250	7	5	25	50
VSA 32248FB-B55C¹)	FS7	246	DX-EMC34-250	250	37	25	50	75
			DX-EMC34-250-L	250	7	5	25	50

1) VSA variable frequency drive with DC link choke
2) Side-mounting configuration only
$\longrightarrow \begin{aligned} & \text { DX-EMC...-FS: Base-mounted filter for the specified frame size } \\ & \text { DX-EMC...-L: Low leakage current }\end{aligned}$

6 Technical Data
6.8 Radio interference suppression filter

Voltage class: 400 V

Mains voltage ($\mathbf{5 0 / 6 0} \mathrm{Hz}$) ULN $380(-10 \%)-480(+10 \%)$ V
$\mathbf{U}_{\mathrm{e}} 400 \mathrm{~V}$ AC, three-phase / $\mathbf{U}_{\mathbf{2}} 400 \mathrm{~V} \mathrm{AC}$, three-phase
Table 44: Assigned radio interference suppression filter (three-phase)

Device Type	Frame size	Input curren	Radio interference suppression filter U_{LN} : max. $\mathbf{5 2 0} \mathrm{V}+\mathbf{0} \%, 50 / 60 \mathrm{~Hz} \pm 10 \%$, maximum ambient air temperature: $50{ }^{\circ} \mathrm{C}$					
				Ampere rating	Leakage current (IEC38 +10 \%)	max. motor cable length		
						C1	C2	C3
		ILN		I_{e}	IPE	1	1	1
		A		A	A	m	m	m
VSA 342D2FB-A20C	FS2	3.5	DX-EMC34-008	8	21	25	50	75
			DX-EMC34-008-L	8	6	5	25	50
			DX-EMC34-011-FS2	11	21	25	50	75
			DX-EMC34-011-FS2-L	11	6	5	25	50
VSA 344D1FB-A20C	FS2	6	DX-EMC34-008	8	21	25	50	75
			DX-EMC34-008-L	8	6	5	25	50
			DX-EMC34-011-FS2	16	21	25	50	75
			DX-EMC34-011-FS2-L	16	6	5	25	50
VSA 349D5FB-A20C	FS2	12	DX-EMC34-008	8	21	25	50	75
			DX-EMC34-008-L	8	6	5	25	50
			DX-EMC34-011-FS2	16	21	25	50	75
			DX-EMC34-011-FS2-L	16	6	25	25	50
VSA 34018FB-A20C	FS3	22	DX-EMC34-030	30	29	25	50	75
			DX-EMC34-030-L	30	6.5	25	25	50
			DX-EMC34-025-FS3	25	21	25	50	75
			DX-EMC34-025-FS3-L	25	6	25	25	50
VSA 34024FB-A20C	FS3	28	DX-EMC34-030	30	29	25	50	75
			DX-EMC34-030-L	30	6.5	25	25	50
			DX-EMC34-031-FS4 2)	31	20	25	50	75
			DX-EMC34-031-FS4-L ${ }^{2}$	31	6	25	25	50
VSA 34024FB-B55C	FS4	28	DX-EMC34-030	30	29	25	50	75
			DX-EMC34-030-L	30	6.5	25	25	50
			DX-EMC34-031-FS4	31	20	25	50	75
			DX-EMC34-031-FS4-L	31	6	25	25	50
VSA 34030FB-B55C	FS4	34	DX-EMC34-042	42	29	25	50	75
			DX-EMC34-042-L	42	6.5	25	50	75
			DX-EMC34-048-FS4	48	20	25	50	75
			DX-EMC34-048-FS4-L	48	6	25	50	75

Device Type	Frame size	Input current	Radio interference suppression filter U_{LN} : max. $520 \mathrm{~V}+\mathbf{0} \%, 50 / 60 \mathrm{~Hz} \pm 10 \%$, maximum ambient air temperature: $50{ }^{\circ} \mathrm{C}$					
				Ampere rating	Leakage current (IEC38 +10 \%)	max. motor cable length		
						C1	C2	C3
		ILN		I_{e}	IPE	1	I	I
		A		A	A	m	m	m
VSA 34039FB-B55C	FS4	44	DX-EMC34-055	55	30	25	50	75
			DX-EMC34-055-L	55	6.5	25	50	75
			DX-EMC34-048-FS4	48	20	25	50	75
			DX-EMC34-048-FS4-L	48	6	25	50	75
VSA 34046FB-B55C	FS4	52	DX-EMC34-055	55	30	25	50	75
			DX-EMC34-055-L	55	6.5	25	50	75
			DX-EMC34-075-FS5 2)	75	20	25	50	75
			DX-EMC34-075-FS5-L 2)	75	6	25	50	75
VSA 34072FB-B55C1)	FS5	77	DX-EMC34-100	100	30	25	50	75
			DX-EMC34-100-L	100	6.5	25	50	75
VSA 34090FB-B55C1)	FS6	103	DX-EMC34-130	130	22	25	50	75
			DX-EMC34-130-L	130	6.5	25	50	75
VSA 34110FB-B55C1)	FS6	126	DX-EMC34-130	130	22	25	50	75
			DX-EMC34-130-L	130	6.5	25	50	75
VSA 34150FB-B55C1)	FS6	165	DX-EMC34-180	180	31	25	50	75
			DX-EMC34-180-L	180	6.5	25	50	75
VSA 34180FB-B55C1)	FS6	192	DX-EMC34-250	250	37	25	50	75
			DX-EMC34-250-L	250	7	25	50	75
VSA 34202FB-B55C1)	FS7	211	DX-EMC34-250	250	37	25	50	75
			DX-EMC34-250-L	250	7	25	50	75
VSA 34240FB-B55C1)	FS7	241	DX-EMC34-250	250	37	25	50	75
			DX-EMC34-250-L	250	7	25	50	75
VSA 34302FB-B55C1)	FS7	299	DX-EMC34-400	400	60	25	50	75
			DX-EMC34-400-L	400	8	25	50	75
VSA 34370FB-B20C²)	FS8	377	DX-EMC34-400	400	60	25	50	75
			DX-EMC34-400-L	400	8	5	25	50
VSA 34450FB-B20C²)	FS8	459	DX-EMC34-750	750	60	25	50	75
			DX-EMC34-750-L	750	8	5	25	50

1) VSA variable frequency drive with DC link choke
2) Side-mounting configuration only
3) If it is not guaranteed that the system percentage impedance is greater than or equal to 1%, a mains choke must be connected. Your uk value should fall between 1 and 4%.
$\longrightarrow \begin{aligned} & \text { DX-EMC...-FS: Base-mounted filter for the specified frame size } \\ & \text { DX-EMC...-L: Low leakage current }\end{aligned}$

6.9 Braking resistances

Figure 102:Examples of DX-BR... brake resistor designs

NOTICE

The specified minimum resistance $\mathrm{R}_{\text {Bmin }}$ must not be fallen below.

A

CAUTION

Brake resistors get extremely hot during operation!

The following tables provide examples of DX-BR... brake resistors rated for individual VSA variable frequency drives. They are specified based on the "high duty" and "low duty" classification for intermittent braking with a cycle time tc of 120 seconds and a pulse power PPeak equal to maximum braking power $\mathrm{P}_{\max }$ of the variable frequency drive with the rated motor output.
Load groups (simplified classification)

- Low duty: Low load with short braking duration and low duty factor (up to about 25%), e.g., for horizontal conveyors and handling equipment for bulk cargo and general cargo, end carriages, sliding doors, and turbomachinery (centrifugal pumps, fans).
- High duty: High load with long braking duration and high duty factor (at least 30%), e.g., for elevators, downhill conveyors, winders, centrifuges, flywheel motors, and large fans.

\longrightarrow
All brake resistors feature a temperature switch for protection against thermal overload.

This dry contact (N/C) can be directly integrated into the VSA variable frequency drive's control section and work as an external fault message (control terminal 10, DI5, parameter P9-08 = 5).

Exception:

Resistors DX-BR3-100 and DX-BR5-33 do not feature a circuitbreaker. They are inserted into the corresponding recesses on the VSA variable frequency drive's heat sinks (frame sizes FS2 to FS5) and are automatically protected against thermal overloads as a result (heat sink overtemperature, display: $\boldsymbol{\Delta}^{-\boldsymbol{t}}$).
Table 45: Braking resistance - VSA voltage class 230 V

Device Type	$\begin{aligned} & \text { NN } \\ & \text { N } \\ & \text { d } \\ & \text { 퓬 } \end{aligned}$	Resistance value			Braking resistance (Low duty)					Braking resistance (High duty)				
		$\mathbf{R}_{\mathrm{Bmin}}$ Ω	$\begin{aligned} & \text { RBrec } \\ & \Omega \end{aligned}$	$\begin{aligned} & P_{\max } \\ & k W \end{aligned}$		$\begin{aligned} & \mathbf{R}_{\mathbf{B}} \\ & \Omega \end{aligned}$	$\begin{aligned} & \text { PDB } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & \text { DF } \\ & \% \end{aligned}$	tBrems s		$\begin{aligned} & \mathbf{R}_{\mathrm{B}} \\ & \Omega \end{aligned}$	$\begin{aligned} & \text { PDB } \\ & \text { kW } \end{aligned}$	$\begin{aligned} & \text { DF } \\ & \% \end{aligned}$	tBrems s
Mains voltage: 230 V \| supply voltage (50/60 Hz) $\mathrm{U}_{\mathrm{LN}} \mathbf{2 0 0}(-10 \%)$ - $\mathbf{2 4 0}(+10 \%) \mathrm{V} \mid \mathrm{U}_{\mathrm{e}} \mathbf{2 3 0} \mathrm{V} \mathrm{AC}$, single-phase / $\mathrm{U}_{\mathbf{2}} \mathbf{2 3 0} \mathrm{V}$ AC, three-phase														
VSA 124D3FB-A20C	FS2	25	100	0.75	DX-BR3-100	100	0.2	27	32	DX-BR100-240	100	0.24	32	38
VSA 127DOFB-A20C	FS2	25	50	1.5	DX-BR3-100	100	0.2	13	16	DX-BR050-600	50	0.6	40	48
VSA 12011FB-A20C	FS2	25	35	2.2	DX-BR3-100	100	0.2	9	11	DX-BR042-720	42	0.72	33	39
VSA 324D3FB-A20C	FS2	25	100	0.75	DX-BR3-100	100	0.2	27	32	DX-BR100-240	100	0.24	32	38
VSA 327DOFB-A20C	FS2	25	50	1.5	DX-BR3-100	100	0.2	13	16	DX-BR050-600	50	0.6	40	48
VSA 32011FB-A20C	FS2	25	35	2.2	DX-BR3-100	100	0.2	9	11	DX-BR042-720	42	0.72	33	39
VSA 32018FB-A20C	FS3	20	20	4	DX-BR5-33	33	0.5	13	15	DX-BR025-1440	25	1.44	36	43
VSA 32024FB-A20C	FS3	20	20	5.5	DX-BR5-33	33	0.5	9	11	DX-BR025-1920	25	1.92	35	42
VSA 32024FB-B55C	FS4	12	20	5.5	DX-BR5-33	33	0.5	9	11	DX-BR025-1920	25	1.92	35	42
VSA 32030FB-B55C	FS4	12	22	7.5	DX-025-1440	25	1.44	19	23	DX-027-2880	27	2.88	38	46
VSA 32046FB-B55C	FS4	12	22	11	DX-025-1440	25	1.44	13	16	DX-BR022-5K1	22	5.1	46	56
VSA 32061FB-B55C	FS5	6	12	15	$2 / /$ DX-025-1440	12.5	2.88	19	23	DX-BR012-5K1	12	5.1	34	41
VSA 32072FB-B55C	FS5	6	12	18.5	$2 / /$ DX-025-1440	12.5	2.88	16	19	DX-BR012-9K2	12	9.2	50	60
VSA 32090FB-B55C	FS6	6	6	22	2// DX-BR025-1440	12.5	2.88	13	16	DX-BR012-9K2	12	9.2	42	50
VSA 32110FB-B55C	FS6	3	6	30	2// DX-BR025-1440	12.5	2.88	10	12	DX-BR012-9K2	12	9.2	31	37
VSA 32150FB-B55C	FS6	3	6	37	DX-BR006-5K1	6	5.1	14	17	DX-BR006-18K1	6	18.1	49	59
VSA 32180FB-B55C	FS6	3	6	45	DX-BR006-5K1	6	5.1	11	14	DX-BR006-18K1	6	18.1	40	48
VSA 32202FB-B55C	FS7	3	6	55	DX-BR006-5K1	6	5.1	9	11	DX-BR006-18K1	6	18.1	33	39
VSA 32248FB-B55C	FS7	3	6	75	DX-BR006-9K2	6	9.2	12	15	DX-BR006-33K	6	33	44	53

[^5]Table 46: Braking resistance - VSA voltage class 400 V

Device Type	$\begin{aligned} & \stackrel{y}{N} \\ & \stackrel{N}{N} \\ & \text { む } \\ & \text { 毕 } \end{aligned}$	Resistance value			Braking resistance (Low duty)					Braking resistance (High duty)				
		$\mathrm{R}_{\text {Bmin }}$	RBrec	$\mathbf{P}_{\text {max }}$		R_{B}	PDB	DF	tBrems		R_{B}	PDB	DF	tBrems
		Ω	Ω	kW		Ω	kW	\%	s		Ω	kW	\%	s
VSA 342D2FB-A20C	FS2	50	400	0.75	DX-BR3-100	100	0.2	27	32	DX-BR400-400	400	0.4	53	64
VSA 344D1FB-A20C	FS2	50	200	1.5	DX-BR3-100	100	0.2	13	16	DX-BR216-600	216	0.6	40	48
VSA 345D8FB-A20C	FS2	50	150	2.2	DX-BR3-100	100	0.2	9	11	DX-BR150-0K8	150	0.8	36	44
VSA 349D5FB-A20C	FS2	50	100	4	DX-BR100-600	100	0.6	15	18	2 \& DX-BR050-920	100	1.92	48	58
VSA 34014FB-A20C	FS3	40	75	5.5	DX-BR100-600	100	0.6	11	13	2 \& DX-BR050-920	100	1.92	35	42
VSA 34018FB-A20C	FS3	40	50	7.5	DX-BR050-720	50	0.72	10	12	DX-BR050-2880	50	2.88	38	46
VSA 34024FB-A20C	FS3	40	40	11	DX-BR050-920	50	0.92	9	10	DX-BR047-5K1	47	5.1	46	56
VSA 34024FB-B55C	FS4	22	40	11	DX-BR050-920	50	0.96	9	10	DX-BR047-5K1	47	5.1	46	56
VSA 34030FB-B55C	FS4	22	22	15	DX-BR025-1440	25	1.44	10	12	DX-BR022-5K1	22	5.1	34	41
VSA 34039FB-B55C	FS4	22	22	18.5	DX-BR025-1920	25	1.92	10	12	DX-BR022-9K2	22	9.2	50	60
VSA 34046FB-B55C	FS4	22	22	22	DX-BR025-1920	25	1.92	9	10	DX-BR022-9K2	22	9.2	42	50
VSA 34061FB-B55C	FS5	12	12	30	$2 / /$ DX-BR025-1440	12.5	2.88	10	12	DX-BR012-9K2	12	9.2	31	37
VSA 34072FB-B55C	FS5	12	12	37	$2 / /$ DX-BR027-1920	12.5	3.84	10	12	DX-BR012-18K1	12	18.1	49	59
VSA 34090FB-B55C	FS6	6	6	45	DX-BR006-5K1	6	5.1	11	14	DX-BR006-18K1	6	18.1	40	48
VSA 34110FB-B55C	FS6	6	6	55	DX-BRO06-9K2	6	9.2	17	20	DX-BR006-18K1	6	18.1	33	39
VSA 34150FB-B55C	FS6	6	6	75	DX-BR006-9K2	6	9.2	12	15	DX-BR006-33K3	6	33.3	44	53
VSA 34180FB-B55C	FS6	6	6	90	DX-BR006-9K2	6	9.2	10	12	DX-BR006-33K3	6	33.3	37	44
VSA 34202FB-B55C	FS7	6	6	110	DX-BR006-18K1	6	18.1	16	20	DX-BR012-18K1	6	36.2	33	39
VSA 34240FB-B55C	FS7	6	6	132	DX-BR006-18K1	6	18.1	14	16	4 // DX-BRO06-18K1	6	72.4	55	66
VSA 34302FB-B55C	FS7	6	6	160	DX-BR006-18K1	6	18.1	11	14	4 // DX-BR006-18K1	6	72.4	45	54

6 Technical Data
6.9 Braking resistances

Device Type	$\begin{aligned} & \stackrel{N}{N} \\ & \text { N } \\ & \text { D } \\ & \text { Hivi } \end{aligned}$	Resistance value			Braking resistance (Low duty)					Braking resistance (High duty)				
		$\mathrm{R}_{\text {Bmin }}$	$\mathrm{R}_{\text {Brec }}$	$\mathbf{P}_{\text {max }}$		R_{B}	P_{DB}	DF	tBrems		\mathbf{R}_{B}	PDB	DF	$t_{\text {Brems }}$
		Ω	Ω	kW		Ω	kW	\%	s		Ω	kW	\%	s
VSA 34370FB-B20C	FS8	2	2	200	DX-BRO06-33K3	6	33.3	17	20	DX-BR002-102K4	2	102.4	51	61
VSA 34450FB-B20C	FS8	2	2	250	DX-BR006-33K3	6	33.3	13	16	DX-BR002-102K4	2	102.4	41	49
$2 / / D X-B R \ldots=$ Two units of this model connected in parallel\| $2 \& D X-B R \ldots=$ Two units of this model connected in series $2 / / 2 \& D X-B R \ldots=$ Four units of this model, two and two connected in parallel, and the resulting two parallel links connected in series with each other Resistances: RBmin $=$ Minimum permissible resistance; $\mathrm{R}_{\mathrm{Brec}}=$ Recommended resistance $\mathrm{P}_{\max }=$ Rated power for the low duty and high duty classification														

Table 47: Braking resistance - VSA voltage class 575 V

Device Type	$\begin{aligned} & \stackrel{\text { N }}{\hat{N}} \\ & \text { D. } \\ & \text { 毕 } \end{aligned}$	Resistance value			Braking resistance (Low duty)					Braking resistance (High duty)				
		$\mathrm{R}_{\text {Bmin }}$	R ${ }_{\text {Brec }}$	$\mathbf{P}_{\text {max }}$		R_{B}	PDB	DF	tBrems		$\mathbf{R B}_{B}$	PRD	DF	tBrems
		Ω	Ω	kW		Ω	kW	\%	s		Ω	kW	\%	s
VSA 352D1NB-A20C	FS2	600	600	0.75	2 \& DX-BR430-100	860	0.2	27	32	3 \& DX-BR210-200	630	0.6	80	96
VSA 353D1NB-A20C	FS2	300	300	1.5	DX-BR400-0K4	400	0.4	27	32	2 \& DX-BR150-0K5	300	1	67	80
VSA 354D1NB-A20C	FS2	200	200	2.2	DX-BR200-0K4	200	0.4	18	22	2 \& DX-BR100-600	200	1.2	55	65
VSA 356D5NB-A20C	FS2	150	150	4	DX-BR150-0K5	150	0.5	13	15	2 \& DX-BR075-1K1	150	2.2	55	66
VSA 359DONB-A20C	FS2	100	100	5.5	DX-BR100-0K8	100	0.8	15	17	2 \& DX-BR050-1440	100	2.88	52	63
VSA 35012NB-A20C	FS3	80	80	7.5	DX-BR100-920	100	0.96	13	15	2 \& DX-BR050-1440	100	2.88	38	46
VSA 35017NB-A20C	FS3	50	50	11	DX-BR050-1440	50	1.44	13	16	2 \& DX-BRO25-1920	50	3.84	35	42
VSA 35022NB-A20C	FS3	33	33	15	DX-BR050-1440	50	1.44	10	12	DX-BR040-5K1	40	5.1	34	41
VSA 35022NB-B55C	FS4	33	33	15	DX-BR050-1440	50	1.44	10	12	DX-BR040-5K1	40	5.1	34	41
VSA 35028NB-B55C	FS4	33	33	18.5	DX-BR040-3K1	40	3.1	17	20	DX-BR047-9K2	47	9.2	50	60
VSA 35034NB-B55C	FS4	22	22	22	DX-BR022-3K1	22	3.1	14	17	DX-BR022-9K2	22	9.2	42	50
VSA 35043NB-B55C	FS5	16	16	30	DX-BR022-5K1	22	5.1	17	20	DX-BR022-9K2	22	9.2	31	37
VSA 35054NB-B55C	FS5	16	16	37	DX-BR022-5K1	22	5.1	14	17	2 \& DX-BR012-9K2	24	18.4	50	60
VSA 35065NB-B55C	FS5	12	12	45	DX-BR012-5K1	12	5.1	11	14	DX-BR012-18K1	12	18.1	40	48
VSA 35078NB-B55C	FS6	12	12	55	DX-BR012-5K1	12	5.1	9	11	DX-BR012-18K1	12	18.1	33	39
VSA 35105NB-B55C	FS6	8	8	75	DX-BR012-9K2	12	9.2	12	15	2 \& DX-BRO06-18K1	12	36.2	48	58
VSA 35130NB-B55C	FS6	8	8	90	DX-BR012-9K2	12	9.2	10	12	2 \& DX-BR006-18K1	12	36.2	40	48
VSA 35150NB-B55C	FS6	8	8	110	DX-BR012-9K2	12	9.2	8	10	2 \& DX-BR006-18K1	12	36.2	33	39

[^6]Resistances: $R_{\text {Bmin }}=$ Minimum permissible resistance; $R_{B r e c}=$ Recommended resistance
$P_{\max }=$ Rated power for the low duty and high duty classification
6.10 Motor chokes

6.10 Motor chokes

Figure 103:Motor choke DX-LM3...
Table 48: Motor chokes that should be used

Device Type	VSA 34...	VSA 35...2)	Assigned motor choke ${ }^{1)}$	
VSA 12... VSA 32...			Type	Ampere rating A
VSA 124D3...	VSA 342D2...	VSA 352D1...	DX-LM3-005	5
VSA 324D3...	VSA 344D1...	VSA 353D1...	DX-LM3-005	5
		VSA 354D1...	DX-LM3-005	5
VSA 127D0...	VSA 345D8...	VSA 356D5...	DX-LM3-008	8
VSA 327D0...			DX-LM3-008	8
VSA 12011...3)	VSA 349D5...	VSA 359D0...	DX-LM3-011	11
VSA 32011...3)			DX-LM3-011	11
	VSA 34014...	VSA 35012...	DX-LM3-016	16
VSA 32018..	VSA 34018...	VSA 35017...	DX-LM3-035	35
VSA 32024...	VSA 34024...	VSA 35022...	DX-LM3-035	35
VSA 32030...	VSA 34030...	VSA 35028...	DX-LM3-035	35
		VSA 35034...	DX-LM3-035	35
VSA 32046...	VSA 34039...	VSA 35043...	DX-LM3-050	50
	VSA 34046...		DX-LM3-050	50
VSA 32061...	VSA 34061...	VSA 35054...	DX-LM3-063	63
VSA 32072...	VSA 34072...	VSA 35065....	DX-LM3-080	80
		VSA 35078...	DX-LM3-080	80
VSA 32090...	VSA 34090...		DX-LM3-100	100
VSA 32110...	VSA 34110...	VSA 35105...	DX-LM3-150	150
VSA 32150...	VSA 34150...	VSA 35130...	DX-LM3-150	150
		VSA 35150...	DX-LM3-150	150
VSA 32180...	VSA 34180...		DX-LM3-180	180
VSA 32202.	VSA 34202..		DX-LM3-220	220
VSA 32248...	VSA 34240...		DX-LM3-260	260

Device Type		Assigned motor choke ${ }^{11}$	
VSA 12... VSA 32...	VSA 34...	VSA 35...2)	Type
			Ampere rating
	VSA 34302...	DX-LM3-303	303
	VSA 34370...4)	DX-LM3-370	370
	VSA 34450...4)	DX-LM3-450	450

1) Maximum ambient temperature of $50^{\circ} \mathrm{C}$ for the corresponding VSA variable frequency drive with an IP20 degree of protection. For devices with an IP55 degree of protection: with a derating of 1.5% per ${ }^{\circ} \mathrm{C}$ above $40^{\circ} \mathrm{C}$ on rated operational current l_{e} of VSA and DX-LM3..
2) DX-LM3 ... motor choke only for motor voltages (= mains voltages ULN) of up to 500 V AC
3) Above $40^{\circ} \mathrm{C}$, use DX -LM3-016 motor choke
4) Above $40^{\circ} \mathrm{C}$, with a derating of 1.5% on rated operational current l_{e} of VSA and DX-LM3...

For more information and technical data on DX-LM3... motor chokes, please refer to instruction leaflet IL00906003Z.

6 Technical Data
6.11 Sine filter

6.11 Sine filter

Figure 104:Sine filter DX-SIN3...
$\longrightarrow \quad \begin{aligned} & \text { Sine filter DX-SIN3 } \ldots \text { should only be operated with fixed } \\ & \text { switching frequencies. }\end{aligned}$
Accordingly, the switching frequency (P2-24) must be set to the value set in parameter P6-02 (auto temperature management) (P2-24 = P6-02).

Permissible switching frequencies for VSA with DX-SIN3...: $1 \triangleq 8 \mathrm{kHz} ; 2 \wedge 12 \mathrm{kHz}$

As a result of double modulation, the value set on the VSA variable frequency drive will be twice the effective value on the sine filter ($1 \triangleq 8 \mathrm{kHz} \rightarrow 4 \mathrm{kHz} ; 2 \triangleq 12 \mathrm{kHz} \rightarrow 6 \mathrm{kHz}$).

Table 49: Assigned sine filters (degree of protection IP00)

Device Type			Assigned sine filter ${ }^{11}$, rated frequency $\mathrm{f}_{2}=0-150 \mathrm{~Hz}$		
VSA 12... VSA 32...	VSA 34...	VSA 35... ${ }^{2 /}$	Type	Ampere rating A	Voltage drop uk at 400 V \%
VSA 124D3...	VSA 342D2...	VSA 352D1...	DX-SIN3-010	10	7
VSA 127D0...	VSA 344D1...	VSA 353D1...	DX-SIN3-010	10	7
VSA 12011... ${ }^{3}$	VSA 345D8...	VSA 354D1...	DX-SIN3-010	10	7
VSA 324D3...	VSA 349D5...	VSA 356D5...	DX-SIN3-010	10	7
VSA 327D0...		VSA 359D0...	DX-SIN3-010	10	7
VSA 32011... ${ }^{3}$			DX-SIN3-010	10	7
	VSA 34014...	VSA 35012...	DX-SIN3-016	16.5	7.5
VSA 32018..	VSA 34018...	VSA 35017...	DX-SIN3-023	23.5	8
		VSA 35022...	DX-SIN3-023	23.5	8
VSA 32024...	VSA 34024...	VSA 35028...	DX-SIN3-032	32	8.7
VSA 32030...	VSA 34030...	VSA 35028...	DX-SIN3-032	32	8.7
		VSA 35034...	DX-SIN3-037	37	8.6
VSA 32046...	VSA 34039...	VSA 35043...	DX-SIN3-048	48	7.8
	VSA 34046...		DX-SIN3-048	48	7.8
VSA 32061...	VSA 34061...	VSA 35054...	DX-SIN3-061	61	8.3
VSA 32072...	VSA 34072...	VSA 35065....	DX-SIN3-072	72	7.5
VSA 32090...	VSA 34090...	VSA 35078...	DX-SIN3-090	90	10
VSA 32110...	VSA 34110...	VSA 35105...	DX-SIN3-115	115	11
VSA 32150...	VSA 34150...	VSA 35130...	DX-SIN3-150	150	10.2
		VSA 35150...	DX-SIN3-150	150	10.2
VSA 32180...	VSA 34180...		DX-SIN3-180	180	7.5
VSA 32202...	VSA 34202...		DX-SIN3-250	250	7.5
VSA 32248...	VSA 34240...		DX-SIN3-250	250	7.5
	VSA 34302...		DX-SIN3-440	440	7.5
	VSA 34370...		DX-SIN3-440	440	7.5
	VSA 34450...		DX-SIN3-480	480	7
1) Maximum permissible ambient air temperature: $+50^{\circ} \mathrm{C}$; maximum permissible motor voltage $\mathrm{U}_{2 \text { max: }}: 520 \mathrm{~V}$ 2) Sine filter DX-SIN3... only for (= supply voltage ULN) to 500 V AC 3) VSA $12011 \ldots$ and VSA $32011 \ldots$ for load currents (rated motor current) of up to 10 A					

For more information and technical data on DX-SIN3... sine filters, please refer to instruction leaflet IL00906001Z.

6.12 All-pole sine filters

\rightarrowPlease enquire for DX-SIN3-...-A all-pole sine filters for motor currents of up to 180 A .

All-pole sine filters make it possible to reduce differential-mode and common-mode interference at the variable frequency drive output when using extremely long motor cable lengths. This makes it possible to eliminate the bearing currents, caused by common-mode voltage, between the motor windings' neutral point and earth potential, extending the motor's lifespan.
DX-SIN3-...-A all-pole sine filters also require being connected to DC+ (or +) and DC- (or -) on the internal DC link in VSA variable frequency drives.

They can be used

- For fixed switching frequencies ? 8 kHz (P2-24, double modulation)
- Output voltage $\mathrm{U}_{2 \max }$ to 500 V ,
- Rotating field frequencies (f_{2}) of 0 to 60 Hz .

They make it possible to forego the use of screened motor cables.
> $\longrightarrow \quad$ DX-SIN3-...-A all-pole sine filters may only be operated with fixed switching frequencies.
> Accordingly, the switching frequency (P2-24) must be set to the value set in parameter P6-02 (auto temperature management) (P2-24 = P6-02).

Permissible switching frequencies for VSA with DX-SIN3...: $1 \xlongequal{\wedge} \mathrm{kHz} ; 2 \bumpeq 12 \mathrm{kHz}$

As a result of double modulation, the value set on the VSA variable frequency drive will be twice the effective value on the sine filter ($1 \wedge 8 \mathrm{kHz} \rightarrow 4 \mathrm{kHz} ; 2 \xlongequal{\wedge} 12 \mathrm{kHz} \rightarrow 6 \mathrm{kHz}$).

Table 50: Rated all-pole sine filters (IP20 degree of protection)

Device Type	VSA 34...	Assigned sine filter ${ }^{11}$, rated frequency $\mathrm{f}_{2}=0-150 \mathrm{~Hz}$		
		Type	Ampere rating	Voltage drop u_{K} at 400 V
			A	\%
	VSA 342D2...	DX-SIN3-005-A	5	5
	VSA 344D1...	DX-SIN3-005-A	5	5
	VSA 345D8...	DX-SIN3-013-A	13	5
	VSA 349D5...	DX-SIN3-013-A	13	5
	VSA 34014...	DX-SIN3-024-A	24	5
	VSA 34018...	DX-SIN3-024-A	24	5
	VSA 34024...	DX-SIN3-024-A	24	5
	VSA 34030...	DX-SIN3-046-A	46	5
	VSA 34039...	DX-SIN3-046-A	46	5
	VSA 34046...	DX-SIN3-046-A	46	5
	VSA 34061...	DX-SIN3-062-A	62	5
	VSA 34072...	DX-SIN3-075-A	75	5
	VSA 34090...	DX-SIN3-150-A	150	5
	VSA 34110...	DX-SIN3-150-A	150	5
	VSA 34150...	DX-SIN3-150-A	150	5

[^7]6 Technical Data
6.12 All-pole sine filters

7 Accessories

7.1 List of accessories

Type	Description	Document
DX-KEY-...	External keypad	AP040022
DXA-EXT-3 RO	Adds three relay outputs	IL040006ZU
DXA-EXT-3DI1RO	Adds three digital inputs and one relay output	IL040007ZU
DXA-EXT-ENCOD	Dual-channel encoder module for using closed-loop vector control	AP040028DE
DX-NET-SWD1	Interface card for connecting to a SmartWire-DT network	MN04012009Z
DX-COM-STICK	Parameter copying stick for establishing a Bluetooth connection to PC software	MN040003
DX-COM-PCKIT	Wired communication between VSA and PC	MN040003
DX-CBL-PC1M5	Wired communication between VSA and PC	MN040003
DX-SPL-R145-2SL1PL	RJ45, 8-pin, splitter, 2 sockets, 1 plug on short connection cable	IL04012023Z
DX-SPL-RJ45-3SL	RJ45, 8-pin, splitter, 3 sockets	IL04012023Z
DX-SPL-RJ45	RJ45, 8-pin, splitter, 2 sockets, 1 plug	IL 040026ZU
DX-SPL-RJ45-TERM	RJ45, 8-pin, splitter, 1 socket, 1 plug, integrated bus termination resistor for CANopen and Modbus	IL 040026ZU
DX-EMC-MNT...	EMC cable bracket. Can be used to route and secure cables in the connection area	IL040010ZU
drivesConnect	PC parameter configuration software for variable frequency drives, with integrated oscilloscope function, drive control function, and function block creation for VSA	MN040003

PowerXLim
VSA
Variable Frequency Drives
Parameter Manual

Before commencing the installation

- Disconnect the power supply of the device.
- Ensure that devices cannot be accidentally restarted.
- Verify isolation from the supply.
- Earth and short circuit the device.
- Cover or enclose any adjacent live components.
- Follow the engineering instructions (AWA/IL) for the device concerned.
- Only suitably qualified personnel in accordance with EN 50110-1/-2 (VDE 0105 Part 100) may work on this device/system.
- Before installation and before touching the device ensure that you are free of electrostatic charge.
- The functional earth (FE, PES) must be connected to the protective earth (PE) or the potential equalisation. The system installer is responsible for implementing this connection.
- Connecting cables and signal lines should be installed so that inductive or capacitive interference does not impair the automation functions.
- Install automation devices and related operating elements in such a way that they are well protected against unintentional operation.
- Suitable safety hardware and software measures should be implemented for the $1 / O$ interface so that an open circuit on the signal side does not result in undefined states in the automation devices.
- Ensure a reliable electrical isolation of the extra-low voltage of the 24 V supply. Only use power supply units complying with IEC 60364-4-41 (VDE 0100 Part 410) or HD384.4.41 S2.
- Deviations of the mains voltage from the rated value must not exceed the tolerance limits given in the specific ations, otherwise this may cause malfunction and dangerous operation.
- Emergency stop devices complying with IEC/EN 60204-1 must be effective in all operating modes of the automation devices. Unlatching the emergency-stop devices must not cause a restart.
- Devices that are designed for mounting in housings or control cabinets must only be operated and controlled after they have been installed and with the housing closed. Desktop or portable units must only be operated and controlled in enclosed housings.
- Measures should be taken to ensure the proper restart of programs interrupted after a voltage dip or failure. This should not cause dangerous operating states even for a short time. If necessary, emergency-stop devices should be implemented.
- Wherever faults in the automation system may cause injury or material damage, external measures must be implemented to ensure a safe operating state in the event of a fault or malfunction (for example, by means of separate limit switches, mechanical interlocks etc.).
- Depending on their degree of protection, frequency inverters may contain live bright metal parts, moving or rotating components or hot surfaces during and immediately after operation.
- Removal of the required covers, improper installation or incorrect operation of motor or frequency inverter may cause the failure of the device and may lead to serious injury or damage.
- The applicable national accident prevention and safety regulations apply to all work carried on live frequency inverters.
- The electrical installation must be carried out in accordance with the relevant regulations (e. g. with regard to cable cross sections, fuses, PE).
- Transport, installation, commissioning and maintenance work must be carried out only by qualified personnel (IEC 60364, HD 384 and national occupational safety regulations).
- Installations containing frequency inverters must be provided with additional monitoring and protective devices in accordance with the applicable safety regulations. Modifications to the frequency inverters using the operating software are permitted.
- All covers and doors must be kept closed during operation.
- To reduce the hazards for people or equipment, the user must include in the machine design measures that restrict the consequences of a malfunction or failure of the drive (increased motor speed or sudden standstill of motor). These measures include:
- Other independent devices for monitoring safetyrelated variables (speed, travel, end positions etc.).
- Electrical or non-electrical system-wide measures (electrical or mechanical interlocks).
- Never touch live parts or cable connections of the frequency inverter after it has been disconnected from the power supply. Due to the charge in the capacitors, these parts may still be live after disconnection. Fit appropriate warning signs.

Table of contents

$0 \quad$ About this manual 3
0.1 Target group 3
0.2 List of revisions 3
0.3 Writing conventions 4
0.3.1 Hazard warnings of material damages 4
0.3.2 Hazard warnings of personal injury 4
0.3.3 Tips 4
1 General 5
1.1 Parameter Groups 5
1.2 Menu structure 6
2 Operating unit 7
2.1 Control unit elements 7
2.2 Setting parameters 8
2.3 Resetting Parameters (RESET) 9
2.4 Extended parameter set 9
2.5 Control via keypad 10
3 Control signal terminals 11
3.1 Correspondence between inputs/outputs and terminals 11
3.2 Configuration of the control signal terminals 15
3.2.1 \quad P1-12 $=0$: Terminal-based operation (= default setting) 15
3.2.2 \quad P1-12 = 1: Digital setpoint value, 1 operating direction 16
3.2.3 $\mathrm{P} 1-12=2$: Digital setpoint value, 2 operating directions 17
3.2.4 P1-12 = 3: PID controller 18
3.2.5 $\mathrm{P} 1-12=4$: Control via field bus 19
3.2.6 $\quad \mathrm{P} 1-12=5$: Slave mode 20
3.2.7 \quad P1-12 $=6$: Control via CANopen 21
3.2.8 $\mathrm{P} 1-12=9$: SWD control + setpoint value 22
3.2.9 $\mathrm{P} 1-12=10$: SWD control 23
3.2.10 $\mathrm{P} 1-12=11$: SWD setpoint value 24
3.2.11 P1-12 = 13: SmartWire-DT control + setpoint, start via bus and terminal 25
4 Messages 26
4.1 List of messages 26
4.2 Messages after a data transfer with a DX-COM-STICK 31
5 Parameter 32
5.1 "Monitor" parameter group 0 32
5.2 Parameter group 1 ("Basic"). 38
5.3 Parameter group 2 ("Functions") 42
5.4 Parameter group 3 ("PID") 49
5.5 Parameter group 4 ("Mode") 51
5.6 Parameter group 5 ("Bus") 53
5.7 Parameter group 6 ("extended") 56
5.8 Parameter group 7 ("Motor") 61
5.9 Parameter group 8 ("Ramp") 63
5.10 Parameter group 9 ("Control") 65

0 About this manual

This manual provides special information that is intended to enable you to configure the parameters for a VSA variable frequency drive according to your needs.

The details apply to the indicated hardware and software versions.
\longrightarrow
For a general description (installation, technical data, etc.) of VSA variable frequency drives, please refer to manual MN04020005Z ("Installation Manual").

0.1 Target group

The content of MN04020006Z-EN manual is written for engineers and electricians. Electrical engineering and physics-related knowledge and skills will be required in order to be able to commission the corresponding devices.

We assume that you have a good knowledge of engineering fundamentals and that you are familiar with handling electrical systems and machines, as well as with reading technical drawings.

0.2 List of revisions

Publication date	Page	Keyword	New	Modifi cation
$11 / 16$	P1-12 = 12: SWD control + setpoint value, auto			
$01 / 16$	-	Initial issue		
		This manual (MN04020006Z - "Parameter 	Configuration Manual") was part of manual 	

0 About this manual
0.3 Writing conventions

0.3 Writing conventions

Symbols with the following meaning are used in this manual:

- Indicates instructions to be followed.

0.3.1 Hazard warnings of material damages

NOTICE
Warns about the possibility of material damage.

0.3.2 Hazard warnings of personal injury

Warns of the possibility of hazardous situations that may possibly cause slight injury.

WARNING
Warns of the possibility of hazardous situations that could result in serious injury or even death.

DANGER

Warns of hazardous situations that result in serious injury or death.

0.3.3 Tips

\rightarrow Indicates useful tips.

All the specifications in this manual refer to the hardware and
software versions documented in it.

1 General

1.1 Parameter Groups

The VSA variable frequency drive's functions are configured with the use of parameters. These parameters are subdivided into ten groups (P0-..., ..., P9-...):

Table 1: Parameter Groups

| Parameter group | Theme |
| :--- | :--- | :--- |
| P0 | Monitor |
| P1 | Basic |
| P2 | Functions |
| P3 | PID |
| P4 | Modbus |
| P5 | Bus |
| P6 | Extended |
| P7 | motor |
| P8 | Ramps |
| P9 | control assembly |

The following page ("Menu structure") features a diagram
showing how to switch between parameter groups.

Default settings

By default (= unit as supplied), only parameter group 1 ("Basic") will be accessible.

Extended parameter set

Level 2 (menu P0 to menu P5) and level 3 (menu P0 to menu P9) can be accessed by using parameter P-14 to enter the correct password.

The default passwords are:

- Access to level 2: 101
- Access to level 3: 201

Users can change this password as required:

- Password for Level 2 with: P2-40
- Password for Level 3 with: P6-30
1.2 Menu structure

2 Operating unit

2.1 Control unit elements

The following figure shows the elements of the VSA variable frequency drive integrated operating unit.

View

Push buttons

Figure 1: Operating unit view

Table 2: Keypad elements - Buttons

Button	Attribute ID	Explanation
(1) \mathbb{K}	OK	- Opens and closes the parameter interface - Saves parameter values - Changes the value being displayed: A, rpm, etc.
	START	- Starts the variable frequency drive ${ }^{1)}$ - Changes the operating direction ${ }^{2}$) if the motor is running
	STOP	- Stops the variable frequency drive ${ }^{11}$ - Reset - Resetting after an error message
	UP	- Increases the speed ${ }^{11}$ - Increment numeric value or parameter number
	DOWN	- Decreases the speed ${ }^{11}$ - Decrement numeric value or parameter number
Note: 1) $\mathrm{P} 1-12=1$ 2) $\mathrm{P} 1-12=2$	(one operating	on) or $=2$ (two operating directions)

2 Operating unit

2.2 Setting parameters

2.2 Setting parameters

Table 3: Navigating within the keypad

Switching between two parameter groups

The parameters are in sequential order. In other words:
Moving forward from the last parameter in a parameter group will take you to the first parameter in the next parameter group and the other way around.

Press the $\mathbf{\triangle}$ and STOP buttons to jump to the first parameter in the next parameter group

Press the $\boldsymbol{\nabla}$ and $\mathbf{S T O P}$ buttons to jump to the first parameter in the previous parameter group

2.3 Resetting Parameters (RESET)

Table 4: Resetting parameters (RESET)

Commands | Reset to default settings |
| :--- |
| Peseription |

2.4 Extended parameter set

Table 5: Enabling and disabling access to the extended parameter set

2 Operating unit

 2.5 Control via keypad

2.5 Control via keypad

Note:

In this mode, a high-level signal must be applied at terminal 2 (DI1) as an enable signal for the VSA variable frequency drive.

3 Control signal terminals

3.1 Correspondence between inputs/outputs and terminals

Input/Output	Clips
Entries	
DI1	Terminal 2
DI2	Terminal 3
D13	Terminal 4
DI4/Al1	Terminal 6
DI5/Al2	Terminal 10
DigIN: 6	Terminal 1 on DXA-EXT-3DI1RO
DiglN: 7	Terminal 2 on DXA-EXT-3DI1RO
DigIN: 8	Terminal 3 on DXA-EXT-3DI1RO
Safety Torque Off	Terminals 12 / 13
Outputs	
A01/D01	Terminal 8
A02/D02	Terminal 11
R01 (relays, changeover contacts)	Terminals 14/15/16
RO2 (relay, N/0)	Terminals 17/18
RO3 (relay, N/O)	Terminals $5 / 6$ on DXA-EXT-3DIIRO or Terminals $1 / 2$ on DXA-EXT-3RO
RO4 (relay, N/0)	Terminals 3/4 on DXA-EXT-3R0
RO5 (relay, N/0)	Terminals 5/6 on DXA-EXT-3R0

Parameter P1-13 can be used to select the configuration for the control signal terminals. More specifically, you can select predefined terminal configurations by setting P1-13 to a value between 1 and 21. The setting (digital/analog) for terminals 6 and 10 will be configured automatically based on the value set for parameter P1-13. In addition to this, you have the option of configuring the terminals freely. To do this, set P1-13 to 0 . You can then use menu 9 to configure the terminals according to your needs.
The following control signal terminal configuration tables use the abbreviations and acronyms listed below:

3 Control signal terminals

3.1 Correspondence between inputs/outputs and terminals

Table 7: Abbreviations and acronyms for control signal terminal configurations

Abbreviation	Significance
Al1 REF	Analog input Al1 (terminal 6) Used as a speed setpoint input. - P2-30: configuration (voltage input/current input ...) - P2-31: scaling - P2-32: offset
Al2 REF	Analog input Al2 (terminal 10) Used as a speed setpoint input. - P2-33: configuration (voltage input/current input ...) - P2-34: scaling - P2-35: offset
AI2 Torque REF	Analog input Al2 (terminal 10) Used as a torque setpoint input. - P2-33: configuration (voltage input/current input ...) - P2-34: scaling - P2-35: offset
DIR	Used to select an operating direction Used together with the START command. - Low = clockwise rotating field (FWD) - High = anticlockwise rotating field (REV) Note: If there is a wire breakage and the REV operating direction is selected, this will cause the drive to reverse! Alternative: Use configuration with FWD/REV.
DOWN	Used to reduce the speed if a digital setpoint value is selected (P1-12 = 1 or $=2$). Used together with the UP command.
ENA	Variable frequency drive enable signal (ENA = Enable) A start signal (START, FWD, REV) is additionally required for starting. If ENA is removed, the drive will coast.
EXTFLT	Ext Fault/Warning Can be used to integrate an external signal into the variable frequency drive's fault messages. During operation, there must be a high-level signal at the terminal. If the unit detects a low-level signal instead, the drive will be switched off and display $E-E_{r}, P$ as a fault message.
FWD	Starts the drive with a clockwise rotating field (FWD = Forward) If a high-level signal is applied at the corresponding terminal, the drive will accelerate with the selected ramp. Removing the signal will cause the drive to stop. In this case, the specific way in which it stops will depend on the value set for P1-05 (stop mode). Once the variable frequency drive stops, it will be locked. In applications with two operating directions, the counterclockwise rotating field is linked to REV. FWD and REV are XOR'd. If both signals are applied simultaneously, the drive will ramp down to zero with the quick stop ramp (P2-25).
INV	Change of rotation (INV = Inverse) The operating direction will be reversed as per the configured ramps. - High = invert - Low = Do not reverse
Pulse FWD (NO) Pulse REV (NO) Pulse STOP (NC)	Pulse control Used to control the drive like a latching reversing contactor circuit. The Pulse STOP signal must always be present when operating the drive. If the signal is not present, it will not be possible to start the drive / the drive will ramp down to zero. To start, all that is required is a pulse via the FWD (clockwise rotating field) or REV (anticlockwise rotating field) signal. The FWD and REV signals do not need to be continuously applied during operation. In order to be able to use this function, P9-05 must be set to 1 .

Abbreviation	Significance
REV	Starts the drive with a counterclockwise rotating field (REV = Reverse) If a high-level signal is applied at the corresponding terminal, the drive will accelerate with the selected ramp. Removing the signal will cause the e rive to stop. In this case, the specific way in which it stops will depend on the value set for P1-05 (stop mode). Once the variable frequency drive stops, it will be locked. In applications with two operating directions, the clockwise rotating field is selected with FWD. FWD and REV are XOR'd. If both signals are applied simultaneously, the drive will ramp down to zero with the quick stop ramp (P2-25).
Quick Stop If both inputs have a high level at the same time, the drive will do a quick stop with the ramp configured with P2-25.	
Select Quick-Dec	

3 Control signal terminals

3.1 Correspondence between inputs/outputs and terminals

Abbreviation	Significance		
Select f-Fix Bit0	Used to select a fixed frequency with digital commands		
Select f-Fix Bit1	Fixed frequencies f-Fix1, ..., f-Fix8 are defined with parameters P2-01, ..., P2-08.		
Select f-Fix Bit2	Fixed frequency Bit2	Bit1	Bit0
	f-Fix (P2-01) 0	0	0
	f-Fix2 (P2-02) 0	0	1
	f-Fix3 (P2-03) 0	1	0
	f-Fix4 (P2-04) 0	1	1
	f-Fix5 (P2-05) 1	0	0
	f-Fix6 (P2-06) 1	0	1
	$\mathrm{f}-\mathrm{Fix} 7(\mathrm{P} 2-07) \quad 1$	1	0
	f-Fix8(P2-08) 1	1	1
	0 L Low; 1 = High		
Select PID REF/AI2 REF	Used to select between setpoint values - Low = Setpoint from the PID controller's output - High = Al2		
Select PID REF/f-Fix	Used to select between setpoint values - Low = Setpoint from the PID controller's output - High = Fixed frequency The fixed frequency itself is selected with the Select f-Fix Bit0, Select f-Fix Bit1, Select f-Fix Bit2 commands.		
Select PID REF/f-fix1	Used to select between setpoint values - Low = Setpoint from the PID controller's output - High = f-Fix1 (set with P2-01)		
Select Quick-dec	Used to activate a quick stop with the ramp set with P2-25 In order to activate the quick stop, there must be a high signal at both terminals		
Select t-dec/t-dec2	Used to select between deceleration ramp 1 t -dec set with P1-04 and deceleration ramp 2 t -dec2 (P8-11) - Low = Deceleration ramp 1 - High = Deceleration ramp 2		
START	Used to start/stop the drive If a high-level signal is applied at the corresponding terminal, the drive will accelerate with the selected ramp. Removing the signal will cause the drive to stop. In this case, the specific way in which it stops will depend on the value set for $\mathrm{P} 1-05$ (stop mode). Once the variable frequency drive stops, it will be locked. In applications with two operating directions, the directions are selected using the DIR and INV commands.		
UP	Used to increase the speed if a digital setpoint is selected (P1-12 = 1 or 2) Used together with the DOWN command.		

3.2 Configuration of the control signal terminals

3.2.1 P1-12 = 0: Terminal-based operation (= default setting)

Table 8: \quad P1-12 = 0: Terminal-based operation (= default setting)

P1-13	DII (terminal 2)	DI2 (terminal 3)	DI3 (terminal 4)	DI4/AI1 (terminal 6)	DI5/A12 (terminal 10)
0	user-definable	user-definable	user-definable	user-definable	user-definable
1	START	DIR	Select Al1 REF/f-Fix	Al1 REF	Select f-Fix Bit0
2	START	DIR	Select f-Fix Bit0	Select f-Fix Bit1	Select f-Fix Bit2
3	START	DIR	Select Al1 REF/f-Fix1	Al1 REF	AI2 Torque REF
4	START	DIR	Select Al1 REF/f-Fix1	Al1 REF	Select t-dec/t-dec2
5	START	DIR	Select Al1 REF/AI2 REF	Al1 REF	Al2 REF
6	START	DIR	Select Al1 REF/f-Fix1	Al1 REF	EXTFLT
7	START	DIR	Select f-Fix Bit0	Select f-Fix Bit1	EXTFLT
8	START	DIR	Select f-Fix Bit0	Select f-Fix Bit1	Select t-dec/t-dec2
9	START	DIR	Select f-Fix Bit0	Select f-Fix Bit1	Select Al1 REF/f-Fix
10	START	DIR	UP	DOWN	Select DIG REF/f-Fix1
11	FWD	REV	Select Al1 REF/f-Fix	Al1 REF	Select f-Fix Bit0
12	FWD	REV	Select f-Fix Bit0	Select f-Fix Bit1	Select f-Fix Bit2
13	FWD	REV	Select Al1 REF/f-Fix1	Al1 REF	Al2 Torque REF
14	FWD	REV	Select Al1 REF/f-Fix1	Al1 REF	Select t-dec/t-dec2
15	FWD	REV	Select Al1 REF/AI2 REF	Al1 REF	Al2 REF
16	FWD	REV	Select Al1 REF/f-Fix1	Al1 REF	EXTFLT
17	FWD	REV	Select f-Fix Bit0	Select f-Fix Bit1	EXTFLT
18	FWD	REV	Select f-Fix Bit0	Select f-Fix Bit1	Select t-dec/t-dec2
19	FWD	REV	Select f-Fix Bit0	Select f-Fix Bit1	Select Al1 REF/f-Fix
20	FWD	REV	UP	DOWN	Select REF/f-Fix1
21	Pulse FWD (NO)	Pulse STOP (NC)	Pulse REV (NO)	Al1 REF	Select Al1 REF/f-Fix1

The setpoint and the control commands are set/issued via terminals.
P1-12 =11: default settings

- Al1 REF, 0-10 V analog setpoint at control signal terminal 6 ($=0-f_{\text {max }}$)
- f-Fix Bit0, fixed frequency $1=5 \mathrm{~Hz}$ (f-Fix1, P2-01) and fixed frequency $2=10 \mathrm{~Hz}$ (f-Fix2, P2-02)

3 Control signal terminals

3.2 Configuration of the control signal terminals

3.2.2 P1-12 = 1: Digital setpoint value, 1 operating direction

Table 9: $\quad \mathrm{P} 1-12=1$: Digital setpoint value, 1 operating direction

P1-13	DI1 (terminal 2)	DI2 (terminal 3)	$\begin{aligned} & \hline \text { DI3 } \\ & \text { (terminal 4) } \end{aligned}$	DI4/AI1 (terminal 6)	DI5/Al2 (terminal 10)
0	user-definable	user-definable	user-definable	user-definable	user-definable
1	START	DIR	Select DIG REF/f-Fix	No function	Select f-Fix Bit0
2	START	DIR	Select f-Fix Bit0	Select f-Fix Bit1	Select f-Fix Bit2
3	START	DIR	Select DIG REF/f-Fix1	No function	No function
4	START	DIR	Select DIG REF/f-Fix1	No function	Select t-dec/t-dec2
5	START	DIR	Select DIG REF/AI2 REF	No function	Al2 REF
6	START	DIR	Select DIG REF/f-Fix1	No function	EXTFLT
7	START	DIR	Select f-Fix Bit0	Select f-Fix Bit1	EXTFLT
8	START	DIR	Select f-Fix Bit0	Select f-Fix Bit1	Select t-dec/t-dec2
9	START	DIR	Select f-Fix Bit0	Select f-Fix Bit1	Select DIG REF/f-Fix
10	START	DIR	UP	DOWN	Select DIG REF/f-Fix1
11	Select Quick-dec	Select Quick-dec	Select DIG REF/f-Fix	No function	Select f-Fix Bit0
12	Select Quick-dec	Select Quick-dec	Select f-Fix Bit0	Select f-Fix Bit1	Select f-Fix Bit2
13	Select Quick-dec	Select Quick-dec	Select DIG REF/f-Fix1	No function	No function
14	Select Quick-dec	Select Quick-dec	Select DIG REF/f-Fix1	No function	Select t-dec/t-dec2
15	Select Quick-dec	Select Quick-dec	Select DIG REF/AI2 REF	No function	Al2 REF
16	Select Quick-dec	Select Quick-dec	Select DIG REF/f-Fix1	No function	EXTFLT
17	Select Quick-dec	Select Quick-dec	Select f-Fix Bit0	Select f-Fix Bit1	EXTFLT
18	Select Quick-dec	Select Quick-dec	Select f-Fix Bit0	Select f-Fix Bit1	Select t-dec/t-dec2
19	Select Quick-dec	Select Quick-dec	Select f-Fix Bit0	Select f-Fix Bit1	Select DIG REF/f-Fix
20	Select Quick-dec	Select Quick-dec	UP	DOWN	Select DIG REF/f-Fix1
21	Not permissible				

The setpoint value is set using the keypad = digital setpoint value .
The arrow keys are used to adjust the setpoint value.

- If P1-13 = $1, \ldots, 10$:

DI2 can be used to select the operating direction.

- P1-13 = 10 or P1-13 = 20:

DI3 and DI4 can also be used to adjust the setpoint. In this case, they will work simultaneously with the arrow keys on the keypad.

3.2.3 P1-12 = 2: Digital setpoint value, 2 operating directions

Table 10: P1-12 = 2: digital setpoint value, 2 operating directions

P1-13	DII (terminal 2)	DI2 (terminal 3)	DI3 (terminal 4)	DI4/AI1 (terminal 6)	DI5/Al2 (terminal 10)
0	user-definable	user-definable	user-definable	user-definable	user-definable
1	START	INV	Select DIG REF/f-Fix	No function	Select f-Fix Bit0
2	START	INV	Select f-Fix Bit0	Select f-Fix Bit1	Select f-Fix Bit2
3	START	INV	Select DIG REF/f-Fix1	No function	No function
4	START	INV	Select DIG REF/f-Fix1	No function	Select t-dec/t-dec2
5	START	INV	Select DIG REF/AI2 REF	No function	AI2 REF
6	START	INV	Select DIG REF/f-Fix1	No function	EXTFLT
7	START	INV	Select f-Fix Bit0	Select f-Fix Bit1	EXTFLT
8	START	INV	Select f-Fix Bit0	Select f-Fix Bit1	Select t-dec/t-dec2
9	START	INV	Select f-Fix Bit0	Select f-Fix Bit1	Select DIG REF/f-Fix
10	START	INV	UP	DOWN	Select DIG REF/f-Fix1
11	Select Quick-dec	Select Quick-dec	Select DIG REF/f-Fix	No function	Select f-Fix Bit0
12	Select Quick-dec	Select Quick-dec	Select f-Fix Bit0	Select f-Fix Bit1	Select f-Fix Bit2
13	Select Quick-dec	Select Quick-dec	Select DIG REF/f-Fix1	No function	No function
14	Select Quick-dec	Select Quick-dec	Select DIG REF/f-Fix1	No function	Select t-dec/t-dec2
15	Select Quick-dec	Select Quick-dec	Select DIG REF/AI2 REF	No function	AI2 REF
16	Select Quick-dec	Select Quick-dec	Select DIG REF/f-Fix1	No function	EXTFLT
17	Select Quick-dec	Select Quick-dec	Select f-Fix Bit0	Select f-Fix Bit1	EXTFLT
18	Select Quick-dec	Select Quick-dec	Select f-Fix Bit0	Select f-Fix Bit1	Select t-dec/t-dec2
19	Select Quick-dec	Select Quick-dec	Select f-Fix Bit0	Select f-Fix Bit1	Select DIG REF/f-Fix
20	Select Quick-dec	Select Quick-dec	UP	DOWN	Select DIG REF/f-Fix1
21	Not permissible				

The setpoint value is set using the keypad = digital setpoint value; the arrow keys are used to adjust the setpoint value. If the motor is running, pressing the green button again will reverse the operating direction. The last operating direction will be stored when the unit is switched off.

- $\mathrm{P} 1-13=1, \ldots, 10$:

If P1-13 $=1, \ldots, 10$, a signal at DI2 will cause the operating direction set with the keypad to be reversed.

- $\mathrm{P} 1-13=10$ or P1-13 = 20:

DI3 and DI4 can also be used to adjust the setpoint. In this case, they will work at the same time as the arrow keys on the keypad.

3 Control signal terminals

3.2 Configuration of the control signal terminals

3.2.4 P1-12 = 3: PID controller

Table 11: P1-12 = 3: PID controller

P1-13	DI1 (terminal 2)	DI2 (terminal 3)	DI3 (terminal 4)	DI4/AI1 (terminal 6)	DI5/AI2 (terminal 10)
0	user-definable	user-definable	user-definable	user-definable	user-definable
1	Not permissible				
2	Not permissible				
3	START	DIR	Select PID REF/f-Fix1	Defined with P3-05/P3-10	Defined with P3-05/P3-10
4	Not permissible				
5	START	DIR	Select PID REF/AI2 REF	PID actual value (P3-10 = 1)	Al2 REF
6	START	DIR	Select PID REF/f-Fix1	PID actual value (P3-10 = 1)	EXTFLT
7	Not permissible				
8	Not permissible				
9	Not permissible				
10	Not permissible				
11	Not permissible				
12	Not permissible				
13	FWD	REV	Select PID REF/f-Fix1	$\begin{aligned} & \text { Defined with } \\ & \text { P3-05/P3-10 } \end{aligned}$	$\begin{aligned} & \text { Defined with } \\ & \text { P3-05/P3-10 } \end{aligned}$
14	Not permissible				
15	FWD	REV	Select PID REF/AI2 REF	PID actual value (P3-10 = 1)	Al2 REF
16	FWD	REV	Select PID REF/f-Fix	PID actual value (P3-10 = 1)	EXTFLT
17	Not permissible				
18	Not permissible				
19	Not permissible				
20	Not permissible				
21	Not permissible				

3.2.5 P1-12 = 4: Control via field bus

Table 12: P1-12 = 4: Control via field bus

P1-13	$\begin{aligned} & \hline \text { DI1 } \\ & \text { (terminal 2) } \end{aligned}$	$\begin{aligned} & \hline \text { DI2 } \\ & \text { (terminal 3) } \end{aligned}$	$\begin{aligned} & \hline \text { DI3 } \\ & \text { (terminal 4) } \end{aligned}$	DI4/AI1 (terminal 6)	DI5/Al2 (terminal 10)
0	user-definable	user-definable	user-definable	user-definable	user-definable
1	START	INV	Select BUS REF/f-Fix	No function	Select f-Fix Bit0
2	Not permissible				
3	Not permissible				
4	START	INV	Select BUS REF/f-Fix1	No function	Select t-dec/t-dec2
5	START	INV	Select BUS REF/AI2 REF	No function	Al2 REF
6	START	INV	Select BUS REF/f-Fix1	No function	EXTFLT
7	Not permissible				
8	Not permissible				
9	START	INV	Select f-Fix Bit0	Select f-Fix Bit1	Select BUS REF/f-Fix
10	START	INV	No function	No function	Select BUS REF/f-Fix1
11	Select Quick-dec	Select Quick-dec	Select BUS REF/-FFix	No function	Select f-Fix Bit0
12	Not permissible				
13	Not permissible				
14	Select Quick-dec	Select Quick-dec	Select BUS REF/f-Fix1	No function	Select t-dec/t-dec2
15	Select Quick-dec	Select Quick-dec	Select BUS REF/AI2 REF	No function	Al2 REF
16	Select Quick-dec	Select Quick-dec	Select BUS REF/f-Fix1	No function	EXTFLT
17	Not permissible				
18	Not permissible				
19	Select Quick-dec	Select Quick-dec	Select f-Fix Bit0	Select f-Fix Bit1	Select BUS REF/f-Fix
20	Select Quick-dec	Select Quick-dec	No function	No function	Select BUS REF/f-Fix1
21	Not permissible				

- $\mathrm{P} 1-13=1, \ldots, 10$:

An enable signal is required at DI1 in order to run the drive. The drive is started through the bus.

- $\quad \mathrm{P} 1-13=11, \ldots, 20$:

The enable signal for the drive is issued exclusively through the bus. Simultaneously applying a signal at DI1 and DI2 will result in a quick stop.

3 Control signal terminals

3.2 Configuration of the control signal terminals

3.2.6 P1-12 = 5: Slave mode

Table 13: P1-12 = 5: Slave mode

P1-13	$\begin{aligned} & \hline \text { DI1 } \\ & \text { (terminal 2) } \end{aligned}$	$\begin{aligned} & \hline \text { DI2 } \\ & \text { (terminal 3) } \end{aligned}$	$\begin{aligned} & \hline \text { DI3 } \\ & \text { (terminal 4) } \end{aligned}$	DI4/A11 (terminal 6)	DI5/Al2 (terminal 10)
0	user-definable	user-definable	user-definable	user-definable	user-definable
1	START	INV	Select BUS REF/f-Fix	No function	Select f-Fix Bit0
2	Not permissible				
3	Not permissible				
4	START	INV	Select BUS REF/f-Fix1	No function	Select t-dec/t-dec2
5	START	INV	Select BUS REF/AI2 REF	No function	Al2 REF
6	START	INV	Select BUS REF/f-Fix1	No function	EXTFLT
7	Not permissible				
8	Not permissible				
9	START	INV	Select f-Fix Bit0	Select f-Fix Bit1	Select BUS REF/f-Fix
10	START	INV	No function	No function	Select BUS REF/f-Fix1
11	Select Quick-dec	Select Quick-dec	Select BUS REF/f-Fix	No function	Select f-Fix Bit0
12	Not permissible				
13	Not permissible				
14	Select Quick-dec	Select Quick-dec	Select BUS REF/f-Fix 1	No function	Select t-dec/t-dec2
15	Select Quick-dec	Select Quick-dec	Select BUS REF/AI2 REF	No function	Al2 REF
16	Select Quick-dec	Select Quick-dec	Select BUS REF/f-Fix1	No function	EXTFLT
17	Not permissible				
18	Not permissible				
19	Select Quick-dec	Select Quick-dec	Select f-Fix Bit0	Select f-Fix Bit1	Select BUS REF/f-Fix
20	Select Quick-dec	Select Quick-dec	No function	No function	Select BUS REF/f-Fix1
21	Not permissible				

In order to be able to run the slave, an enable signal for the master is always required as well - even if the setpoint does not come from the master!

3.2.7 P1-12 = 6: Control via CANopen

Table 14: P1-12 = 6: Control via CANopen

P1-13	DII (terminal 2)	DI2 (terminal 3)	DI3 (terminal 4)	DI4/AI1 (terminal 6)	DI5/Al2 (terminal 10)
0	user-definable	user-definable	user-definable	user-definable	user-definable
1	ENA	INV	Select BUS REF/f-Fix	No function	Select f-Fix Bit0
2	ENA	INV	Select f-Fix Bit0	Select f-Fix Bit1	Select f-Fix Bit2
3	ENA	INV	Select BUS REF/f-Fix1	No function	AI2 Torque REF
4	ENA	INV	Select BUS REF/f-Fix1	No function	Select t-dec/t-dec2
5	ENA	INV	Select BUS REF/AI2 REF	No function	Al2 REF
6	ENA	INV	Select BUS REF/f-Fix1	No function	EXTFLT
7	ENA	INV	Select f-Fix Bit0	Select f-Fix Bit1	EXTFLT
8	ENA	INV	Select f-Fix Bit0	Select f-Fix Bit1	Select t-dec/t-dec2
9	ENA	INV	Select f-Fix Bit0	Select f-Fix Bit1	Select BUS REF/f-Fix
10	ENA	INV	No function	No function	Select BUS REF/f-Fix1
11	Select Quick-dec	Select Quick-dec	Select BUS REF/f-Fix	No function	Select f-Fix Bit0
12	Select Quick-dec	Select Quick-dec	Select f-Fix Bit0	Select f-Fix Bit1	Select f-Fix Bit2
13	Select Quick-dec	Select Quick-dec	Select BUS REF/f-Fix1	No function	Al2 Torque REF
14	Select Quick-dec	Select Quick-dec	Select BUS REF/f-Fix1	No function	Select t-dec/t-dec2
15	Select Quick-dec	Select Quick-dec	Select BUS REF/AI2 REF	No function	Al2 REF
16	Select Quick-dec	Select Quick-dec	Select BUS REF/f-Fix1	No function	EXTFLT
17	Select Quick-dec	Select Quick-dec	Select f-Fix Bit0	Select f-Fix Bit1	EXTFLT
18	Select Quick-dec	Select Quick-dec	Select f-Fix BitO	Select f-Fix Bit1	Select t-dec/t-dec2
19	Select Quick-dec	Select Quick-dec	Select f-Fix Bit0	Select f-Fix Bit1	Select BUS REF/f-Fix
20	Select Quick-dec	Select Quick-dec	No function	No function	Select BUS REF/f-Fix1
21	Not permissible				

- $\quad \mathrm{P} 1-13=1, \ldots, 10$:

An enable signal is required at DI1 in order to run the drive. The drive is started through the bus.

- $\mathrm{P} 1-13=11, \ldots, 20$:

The enable signal for the drive is issued exclusively through the bus. Simultaneously applying a signal at DI1 and DI2 will result in a quick stop.

3 Control signal terminals

3.2 Configuration of the control signal terminals

3.2.8 P1-12 = 9: SWD control + setpoint value

Table 15: P1-12 = 9: SWD control + setpoint value

P1-13	DI1 (terminal 2)	DI2 (terminal 3)	DI3 (terminal 4)	DI4/AI1 (terminal 6)	DI5/AI2 (terminal 10)
0	user-definable	user-definable	user-definable	user-definable	user-definable
1	ENA	No function	No function	No function	No function
2	ENA	No function	No function	No function	No function
3	ENA	No function	No function	No function	No function
4	ENA	No function	No function	No function	No function
5	ENA	No function	No function	No function	No function
6	ENA	No function	No function	No function	No function
7	ENA	No function	No function	No function	No function
8	ENA	No function	No function	No function	No function
9	ENA	No function	No function	No function	No function
10	ENA	No function	No function	No function	No function
11	ENA	No function	No function	No function	No function
12	ENA	No function	No function	No function	No function
13	ENA	No function	No function	No function	No function
14	ENA	No function	No function	No function	No function
15	ENA	No function	No function	No function	No function
16	ENA	No function	No function	No function	No function
17	ENA	No function	No function	No function	No function
18	ENA	No function	No function	No function	No function
19	ENA	No function	No function	No function	No function
20	ENA	No function	No function	No function	No function
21	Not permissible				

3.2.9 P1-12 = 10: SWD control

Table 16: P1-12 = 10: SWD control

P1-13	$\begin{aligned} & \hline \text { DI1 } \\ & \text { (terminal 2) } \end{aligned}$	$\begin{aligned} & \hline \text { DI2 } \\ & \text { (terminal 3) } \end{aligned}$	DI3 (terminal 4)	DI4/AI1 (terminal 6)	DI5/Al2 (terminal 10)
0	user-definable	user-definable	user-definable	user-definable	user-definable
1	ENA	INV	Select Al1 REF/f-Fix	Al1 REF	Select f-Fix Bit0
2	ENA	INV	Select f-Fix Bit0	Select f-Fix Bit1	Select f-Fix Bit2
3	ENA	INV	Select Al1 REF/f-Fix1	Al1 REF	AI2 Torque REF
4	ENA	INV	Select Al1 REF/f-Fix1	Al1 REF	Select t-dec/t-dec2
5	ENA	INV	Select Al1 REF/AI2 REF	Al1 REF	AI2 REF
6	ENA	INV	Select Al1 REF/f-Fix1	Al1 REF	EXTFLT
7	ENA	INV	Select f-Fix Bit0	Select f-Fix Bit1	EXTFLT
8	ENA	INV	Select f-Fix Bit0	Select f-Fix Bit1	Select t-dec/t-dec2
9	ENA	INV	Select f-Fix Bit0	Select f-Fix Bit1	Select REF/f-Fix
10	ENA	INV	UP	DOWN	Select DIG REF/f-Fix1
11	ENA	INV	Select Al1 REF/f-Fix	Al1 REF	Select f-Fix Bit0
12	ENA	INV	Select f-Fix Bit0	Select f-Fix Bit1	Select f-Fix Bit2
13	ENA	INV	Select Al1 REF/f-Fix1	Al1 REF	AI2 Torque REF
14	ENA	INV	Select Al1 REF/f-Fix 1	Al1 REF	Select t-dec/t-dec2
15	ENA	INV	Select Al1 REF/AI2	Al1 REF	Al2 REF
16	ENA	INV	Select Al1 REF/f-Fix1	Al1 REF	EXTFLT
17	ENA	INV	Select f-Fix Bit0	Select f-Fix Bit1	EXTFLT
18	ENA	INV	Select f-Fix Bit0	Select f-Fix Bit1	Select t-dec/t-dec2
19	ENA	INV	Select f-Fix Bit0	Select f-Fix Bit1	Select REF/f-Fix
20	ENA	INV	UP	DOWN	Select DIG REF/f-Fix1
21	Not permissible				

3 Control signal terminals

3.2 Configuration of the control signal terminals

3.2.10 P1-12 = 11: SWD setpoint value

Table 17: P1-12 = 11: SWD setpoint value

P1-13	DI1 (terminal 2)	DI2 (terminal 3)	DI3 (terminal 4)	DI4/AI1 (terminal 6)	DI5/AI2 (terminal 10)
0	user-definable	user-definable	user-definable	user-definable	user-definable
1	ENA	No function	No function	No function	No function
2	ENA	No function	No function	No function	No function
3	ENA	No function	No function	No function	No function
4	ENA	No function	No function	No function	No function
5	ENA	No function	No function	No function	No function
6	ENA	No function	No function	No function	No function
7	ENA	No function	No function	No function	No function
8	ENA	No function	No function	No function	No function
9	ENA	No function	No function	No function	No function
10	ENA	No function	No function	No function	No function
11	ENA	No function	No function	No function	No function
12	ENA	No function	No function	No function	No function
13	ENA	No function	No function	No function	No function
14	ENA	No function	No function	No function	No function
15	ENA	No function	No function	No function	No function
16	ENA	No function	No function	No function	No function
17	ENA	No function	No function	No function	No function
18	ENA	No function	No function	No function	No function
19	ENA	No function	No function	No function	No function
20	ENA	No function	No function	No function	No function
21	Not permissible				

3.2.11 P1-12 = 13: SmartWire-DT control + setpoint, start via bus and terminal

Table 18: P1-12 = 13: SmartWire-DT control + setpoint, start via bus and terminal

P1-13	DII (terminal 2)	DI2 (terminal 3)	DI3 (terminal 4)	DI4/AI1 (terminal 6)	DI5/AI2 (terminal 10)
0	user-definable	user-definable	user-definable	user-definable	user-definable
1	ENA	START	No function	No function	No function
2	ENA	START	No function	No function	No function
3	ENA	START	No function	No function	No function
4	ENA	START	No function	No function	No function
5	ENA	START	No function	No function	No function
6	ENA	START	No function	No function	No function
7	ENA	START	No function	No function	No function
8	ENA	START	No function	No function	No function
9	ENA	START	No function	No function	No function
10	ENA	START	No function	No function	No function
11	ENA	START	No function	No function	No function
12	ENA	START	No function	No function	No function
13	ENA	START	No function	No function	No function
14	ENA	START	No function	No function	No function
15	ENA	START	No function	No function	No function
16	ENA	START	No function	No function	No function
17	ENA	START	No function	No function	No function
18	ENA	START	No function	No function	No function
19	ENA	START	No function	No function	No function
20	ENA	START	No function	No function	No function
21	Not permissible				

An enable signal is required at DI1 in order to run the drive. The start signal is issued both through the bus and DI2 (AND'ed).

4 Messages

4.1 List of messages

The following messages can occur:
Table 19: List of messages

Message	No.	Possible causes and fixes
$570 P$	-	Ready to start. There is no drive enable signal present. There are no fault messages present.
$n \square-F_{L} t$	00	Shown for P0-13 if there are no messages in the error register.
[17-b	01	Excessively high braking current - Check the brake resistor and its wiring for short-circuits and ground faults. - Make sure that the braking resistance value is not lower than the minimum permissible braking resistance.
QL-br	02	Thermal overload on brake resistor The drive has been switched off in order to prevent the brake resistor from being thermally destroyed. - Make the P1-04 and P2-25 ramp times longer in order to have less frequent braking. - Reduce the load's inertia, if possible.
[-1	03	Overcurrent at variable frequency drive output Occurs right after switching on the unit: - Check the cable connection between the variable frequency drive and the motor - Check the motor for shorted turns and ground faults Occurs when starting the motor: - Check whether the motor can rotate freely and make sure that it is not being blocked mechanically. - Motor with mechanical brake: Check whether the brake is being applied. - Check the connection configuration (star/delta). - Check to make sure that the motor data was entered correctly in P1-07, P1-08, and P1-09. - In vector control mode (P4-01 = 0 or 1): Check to make sure that the $\cos \varphi$ (P4-05) value was entered correctly and that a motor identification run was performed correctly. - Increase the acceleration ramp time (t-acc, P1-03) if necessary. - In speed control mode (P4-01 = 2): Reduce the voltage boost with P1-11. Occurs during operation at a constant speed: - Check whether the motor is overloaded. Occurs during acceleration/deceleration: - The ramp times are too short and require too much power. If P-03 / P-04 cannot be increased, a larger device may be required.
1.t-trP	04	Motor overload. The thermal protection mechanism has tripped as a result of the device being run above the rated motor current set with P1-08 longer than a specific time. - Check to make sure that the motor data was entered correctly in P1-07, P1-08, and P1-09. - In vector control mode (P4-01 = 0 or 1): Check to make sure that the $\cos \varphi$ (P4-05) value was entered correctly and that a motor identification run was performed correctly. - Check the motor's connection configuration (e.g., start/delta) - If the decimal points on the display flash during operation, this means that the unit is being run in its overload range (> P1-08). In this case, use P1-03 to make the acceleration ramp longer or reduce the load. - Make sure that the motor is not being mechanically blocked and that there are no additional loads on the motor.

Message	No.	Possible causes and fixes
P5-trP	05	Overcurrent (Hardware) - Check the wiring to the motor and the motor itself for short-circuits and ground faults. - Disconnect the motor cable from the variable frequency drive and switch the variable frequency drive back on. If the fault message still appears, the device needs to be replaced. Before commissioning the new device, check the system for short-circuits or ground faults that could have caused the device to fail.
ロualt	06	Overvoltage in DC link The DC link voltage value can be viewed using parameter P0-20. PO-36 contains a fault register with the last values before the unit was switched off (scan time: 256 ms). - Check to make sure that the supply voltage falls within the range for which the variable frequency drive is sized. - If the fault occurs during deceleration or stopping: Make the deceleration ramp (P1-04/P2-25) longer or use the brake resistor. - In vector control mode ($\mathrm{P} 4-01=0$ or $=1$): Reduce the speed controller's gain (P4-03). - If using the PID controller: Reduce P3-11 (PID1 fault ramp) to ensure that the ramps are active.
UUロ1	07	Undervoltage in DC link. Note: Generally, this message will appear when the supply voltage is switched off on the device and the DC link voltage dies away. In this case, there is no fault. If the message appears during operation: - Check whether the power supply voltage is too low. - Check all components/devices in the variable frequency drive's feeder circuit (circuit-breaker, contactor, choke, etc.) to make sure they are connected properly and have an adequate contact resistance.
$\square-t$	08	Overtemperature at heat sink. The drive is too hot. The heat sink temperature can be viewed by using PO-21. P0-38 contains a fault register with the last values before the unit was switched off (scan time: $30 \mathrm{~s})$. - Check to make sure that the variable frequency drive is being operated within the ambient temperature range specified for it IP2O devices: max. $50^{\circ} \mathrm{C}$; IP66 devices: max. $40^{\circ} \mathrm{C}$). - Check to make sure that the device fan is running. - Make sure that cooling air can circulate freely (clearances to neighboring devices above and below the variable frequency drive). - Improve the control cabinet's ventilation if necessary: The device's vents must not be obstructed, e.g., by dirt or as a result of devices being installed too close to each other. - Reduce the carrier frequency with P2-24. - Reduce the load if possible.
$u-t$	09	Under-temperature The message will appear if the ambient temperature falls below $-10^{\circ} \mathrm{C}$. In order to be able to start the drive, the temperature must be higher than this.
$P-d E F$	10	The parameters' default settings have been loaded. - Press the STOP button: You will be able to reconfigure the drive after doing so.
E-trip	11	External fault (at digital input 5 , terminal 10 , if P1-13 $=6 / 7 / 16 / 17$). There must be a high-level signal at this input in order to be able to run the variable frequency drive. - If a thermistor is connected to terminal 10 , check whether the motor is too hot.

Message	No．	Possible causes and fixes
5［－0女5	12	Communication error with an external operating unit or with a PC． －Check connections．
Flt－ds	13	Excessively high DC link voltage ripple The DC link voltage ripple can be viewed using PO－16． PO－37 contains a fault register with the last values before the unit was switched off（scan time： 20 ms ）． －Check to make sure that all the mains supply phases are present and that their voltage balance falls within the permissible tolerance range（3 \％）． －Reduce the load if possible． －If the fault persists，please contact your nearest JCI sales branch．
P－L055	14	Incoming power phase failure（only for devices with a three－phase power supply）
h－－ 1	15	Overcurrent at output －See fault No． 03.
th－FLt	16	Malfunctioning heat sink thermistor． －Please contact your nearest JCI sales branch．
dAE日－F	17	Error in internal memory．The parameters have not been saved and the default settings have been loaded． －Change the parameter values（again）and save them once more． －If the message appears again，please contact your nearest JCI sales branch．
4－20 F	18	The analog input＇s input current does not fall within the specified range． －Check the setting in P2－30 for Al1（terminal 6 ）and P2－33 for AI2 （terminal 10）． －In the case of 4－20 mA：Check the setpoint connection for wire breakage．
dALR－E	19	Error in internal memory．The parameters have not been saved and the default settings have been loaded． －Change the parameter values（again）and save them once more． －If the message appears again，please contact your nearest JCI sales branch．
$U-d E F$	20	The customer＇s settings for the parameters have been imported． －Press the STOP button．
F－Ptc	21	Motor PTC thermistor overtemperature
FAn－F	22	The device＇s internal fan is experiencing a fault In the case of frame size FS8：Wrong device fan operating direction Check the supply voltage phase sequence（L1－L2－L3）．
口－hEAt	23	The measured ambient temperature exceeds the specified value． －Check the device＇s internal fan． －Make sure that the required clearance around the device is being maintained and that cooling air can flow through the vents on the device unimpeded． －Reduce the carrier frequency with P2－24． －If possible：Reduce the load．
0－tar 9	24	Maximum permissible torque exceeded． －If possible：Reduce the load or increase acceleration time t－acc．
U－tar 9	25	Only active if brake control is enabled in hoisting gear mode（P2－18＝8）． The torque produced before the hoisting gear＇s mechanical brake is enabled falls below the set threshold．
ロUE－F	26	Device output fault －Please contact your nearest JCI sales branch．
5ta－F	29	Internal STO circuit fault －Please contact your nearest JCI sales branch．

Message	No.	Possible causes and fixes
Enc-al	30	No communication between the encoder module and the variable frequency drive. - Check to make sure that the module is correctly plugged in and secured.
$\begin{aligned} & \text { Enc-az } \\ & 5 P-E r r \end{aligned}$	31	The calculated motor speed is different from the measured motor speed. - Check the encoder connection, including the corresponding shielding. - Increase the value of P6-07 if necessary.
Enc-0ヨ	32	The motor speed and the PPR value entered in P6-06 do not match. The PPR value in P6-06 must be at least 60 . - Check the speed entered in P1-10.
Enc-04	33	Channel A fault: Usually a bad connection. - Check wiring.
Enc-05	34	Channel B fault Usually a bad connection. - Check wiring.
Enc-7b	35	Error on channels A and B Usually a bad connection. - Check wiring.
AEF-DI	40	Motor identification failed: The measured stator resistance varies between the phases. - Make sure that the motor is connected properly and working correctly. - Check the motor windings to make sure they have the same resistance values.
AEF-G2	41	Motor identification failed: The measured stator resistance is too large. - Make sure that the motor is connected properly and working correctly. - Check to make sure that the device's rated output matches the motor's rated output. The difference should not exceed one full output class.
ALF-03	42	Motor identification failed: The measured motor inductance is too low. - Make sure that the motor is connected properly and working correctly.
ALF-D4	43	Motor identification failed: The measured motor inductance is too high. - Make sure that the motor is connected properly and working correctly. - Check to make sure that the device's rated output matches the motor's rated output. The difference should not exceed one full output class.
ALF-05	44	Motor identification failed: The measured motor parameters do not match. - Make sure that the motor is connected properly and working correctly. - Check to make sure that the device's rated output matches the motor's rated output. The difference should not exceed one full output class.
-ut-Ph	49	A phase in the motor cable is not connected or has a discontinuity.
$5 \mathrm{c}-\mathrm{FGI}$	50	No valid Modbus frame was received within the time specified in $\mathrm{P} 5-06$. - Check to make sure that the network master is working correctly. - Check connecting cables. - Increase the value of P5-06 to an acceptable value.
$5 \mathrm{~F}-\mathrm{FGZ}$	51	No valid CANopen frame was received within the time specified in P5-06. - Check to make sure that the network master is working correctly. - Check connecting cables. - Increase the value of $\mathrm{P} 5-06$ to an acceptable value.
$5 \mathrm{~F}-\mathrm{FOB}$	52	Communication between the device and the plugged-in optional field bus module has dropped out. - Check to make sure that the module is installed properly.

4 Messages

4.1 List of messages

Message	No.	Possible causes and fixes
$5 c-F 04$	53	Communication between the device and the plugged-in I/O expansion has dropped out. - Check to make sure that the module is installed properly.
- FF-DI	60	No internal connection to an optional card
- $\mathrm{FF}-\mathrm{OL}$	61	Optional module in undefined operating state
PLE-DI	70	Non-supported function block from function block editor
PLE-02	71	Program from function block editor is too big
PL[-ロヨ	72	Division by zero
PLE-04	73	Lower limit is higher than upper limit
PLE-05	74	Overflow table Function block editor

4.2 Messages after a data transfer with a DX-COM-STICK

Table 20: Possible messages after a data transfer

View	Description
PR55-r	Parameter transfer to DX-COM-STICK interface card was successful
[15-Lac	DX-COM-STICK is interlocked. In order to transfer data, check the switch position on the side.
FRA-r	Error while attempting to read the parameters from the variable frequency drive.
PR55-t	Parameter transfer to variable frequency drive successful.
FRA-P	The parameter set stored in the DX-COM-STICK is for a different output variable (different motor current, motor output, etc.) than that of the connected variable frequency drive.
FR, 1-t	Error when attempting to copy parameter set to variable frequency drive
ח口-dAt	No data found in DX-COM-STICK.
$d r$-Las	Parameter set in variable frequency drive locked. Unlock variable frequency drive first.
$d r-r u n$	The variable frequency drive has an enable signal and cannot take new parameters. Stop the variable frequency drive.
LYPE-E	The parameter set stored in the DX-COM-STICK does not match the variable frequency drive. Only transfers from the variable frequency drive to the DX-COM-STICK are possible.
LSPE-F	The DX-COM-STICK is not compatible with the variable frequency drive.

5.1 "Monitor" parameter group 0

5 Parameter

The following tables use a number of acronyms. These acronyms are defined below:

Abbreviation	Significance
RUN	The parameter can be accessed during operation ("Run" signal)
DS	Default setting (the parameter's value when using the device's factory settings)

\longrightarrow None of the parameters in parameter group 0 can be modified by the user, i.e., they are read-only parameters.

5.1 "Monitor" parameter group 0

Table 21: "Monitor" parameter group 0

Parameter	Designation	Description
P0-01	Analog Input1	Analog Input 1 Level of the signal applied to analog input 1 (terminal 6) after scaling and offsets have been applied. Display $1000 \triangleq 100 \%$.
PO-02	Analog Input2	Analog input 2 Level of the signal applied to analog input 2 (terminal 10) after scaling and offsets have been applied. Display $1000 \triangleq 100 \%$
P0-03	DI1 Status	Status of the Digital Inputs Status of the digital inputs, including the ones on option boards, starting on the left hand side with digital input $1, \ldots, 8$. Display: - $0=$ Low - 1 = High
P0-04	f-PreRamp	Speed reference in front of the ramp
P0-05	Torque Reference	Torque Reference Display: $1000 \triangleq 100 \%$
P0-06	MotorPot Reference	Digital reference value, e.g. coming from the keypad
P0-07	f-Ref Interface0	Speed reference received via fieldbus interface
P0-08	PID1 Set Point	Reference PID Controller 1 Display $4096 \cong 100 \%$
P0-09	PID1 Feedback 1	Feedback value PID Controller 1 Display $4096 \xlongequal{\wedge} 100 \%$
P0-10	PID1 Output	PI(D) controller 1 Output Display $4096 \triangleq 100 \%$
P0-11	Motor Voltage	Instantaneous output voltage
P0-12	Motor Torque	Motor Torque Display $1000 \triangleq 100 \%$
P0-13	Fault Log	Display of the 4 latest faults

Parameter	Designation
P0-14	Magnetizing current I_{q}
P0-15	Torque current $l_{\text {d }}$
P0-16	DC-Link Voltage Ripple
P0-17	Motor Stator Resistance Meas
P0-18	Motor Stator Inductance Meas
P0-19	Motor Rotor Resistance Meas
PO-20	DC-Link Voltage
P0-21	Heatsink Temperature
P0-22	TimeToNextService
P0-23	t-Run IGBT in OT
PO-24	t-Run PCB in OT
P0-25	Motor Speed
P0-26	kWh Meter
P0-27	MWh Meter
P0-28	Application Version

Description

Calculated Magnetizing Current $\left(I_{q}\right)$, providing an autotune has successfully been completed.

Calculated Torque producing Current (Id), providing an autotune has successfully been completed.
DC-Link Voltage Ripple
Measured Motor Stator Resistance (R_{s}), providing an autotune has successfully been completed.

Measured Motor Stator Inductance (Ls), providing an autotune has successfully been completed.

Measured Motor Rotor Resistance (R_{r}), providing an autotune has successfully been completed.

Instantaneous DC Link Voltage
Display $600 \cong 600 \mathrm{~V}$
Instantaneous Heatsink Temperature
Display $40 \cong 40^{\circ} \mathrm{C}$
Time remaining to next service
The service interval is set with P6-24.
Time elapsed, in which the drive has operated with a high heatsink temperature Displays the time in hours and minutes above $85^{\circ} \mathrm{C}$. The value is used for various internal protective functions.

Time elapsed, in which the drive has operated with a high temperature at the PCBs (ambient temperature)
Displays the time in hours and minutes above $80^{\circ} \mathrm{C}$. The value is used for various internal protective functions.

Motorspeed (calculated or measured)

In vector mode this parameter displays the calculated motor speed if no encoder is present. In case of an encoder feedback the measured speed is displayed.

Energy Consumption kWh Meter (resettable)

Displays the energy consumption in kWh.
When the value reaches 1000 , it is reset back to 0 and the number of MWh in PO27 is increased by 1.
This parameter contains 2 values.
The first value visible can be reset by the user with P6-23 = 1 .
The second value cannot be reset and shows together with PO-27 the energy consumption since the day of manufacture.

Energy Consumption MWh Meter

Shows the power consumed in MWh. This parameter contains two values:
The first value shown when the parameter is accessed is the value that the user can reset with P6-23 = 1 .
The second value cannot be reset and, together with PO-26, shows the total energy consumption since the device's date of manufacture.
Application Version

- Level 1: Application version + Check sum
- Level 2: System version + Check sum

5 Parameter

5.1 "Monitor" parameter group 0

Parameter	Designation	Description
P0-29	"Device Information"	Shows specific device information. The first piece of information can be accessed by pressing the $\mathbf{O K}$ button. To view other information, press the $\boldsymbol{\Delta}$ and $\boldsymbol{\nabla}$ arrow keys.
	FrameSize	Frame Size
	NoOflnputPhases	Number of input phases
	kW/HP	Motor Power
	Power@Ue	Device Power at Device Voltage Rating
	Device Voltage	Device Voltage Rating
	DeviceType	Device Type
P0-30	Serial Number	Serial Number of the device
P0-31	t-Run	Total operating time of the drive since the date of manufacture Displayed in hours, minutes and seconds. Pressing the UP key on the drive keypad will change the display from "hours" to "minutes and seconds".
P0-32	t-Run since Restart	Total operating time of the drive since the last trip occured or power down in hours, minutes and seconds. Pressing the UP key on the drive keypad will change the display from "hours" to "minutes and seconds".
P0-33	t-Run since Trip	Total operating time of the drive since the last trip occurred Displayed in hours, minutes and seconds. Pressing the UP key on the drive keypad will change the display from "hours" to "minutes and seconds".
P0-34	t-HoursRun Enable	The drive's operating time since the most recent enable signal, in hours, minutes, and seconds. Pressing the UP key on the drive keypad will change the display from "hours" to "minutes and seconds".
P0-35	Fan Runtime	Run time of the integrated fan (resettable by the user) Displayed in hours. Value 1 is the time since last reset with P6-22. Pressing the UP key on the keypad will change the display to "Fan runtime since the date of manufacture" ("F" is displayed at the beginning of the line).
P0-36	DC-Link0 Log	DC link voltage log Displays the most recent 8 samples of the DC bus voltage prior to a drive trip condition occurring. The sample interval is 256 ms .
P0-37	DC-Link V-RippleO Log	DC link voltage ripple history Shows the last eight DC link voltage ripple values before the device was switched off due to a fault. Scan time: 20 ms
P0-38	Heatsink0 Log	Heatsink temperature log Displays the most recent 8 samples of the heat sink temperature prior to a drive trip condition occurring. The sample interval is 30 s .
P0-39	AmbientTemp0 Log	Internal Ambient Temperature Log Displays the most recent 8 samples of the internal ambient temperature prior to a drive trip condition occurring. The sample interval is 30 s .
PO-40	MotorCurrent0 Log	Motor current log Displays the most recent 8 samples of the Motor current prior to a drive trip condition occurring. The sample interval is 256 ms .

Parameter	Designation	Description
P0-41	FaultCounter Overcurrent	Counts, how often "Overcurrent" occured
P0-42	Fault-Counter DC-Overvoltage	Counts, how often "DC-Overvoltage" occured
PO-43	Fault-Counter DC-Undervoltage	Counts, how often "DC-Undervoltage" occured
P0-44	FaultCounter Overtemperature Heatsink	Number of times the device has been switched off due to heatsink overtemperature since the date of manufacture
P0-45	FaultCounter Overcurrent Brake Chopper	Number of times the device has been switched off due to the brake chopper since the date of manufacture
PO-46	FaultCounter Overtemperature Ambient	Number of times the device has been switched off due to overtemperature (internal ambient temperature) since the date of manufacture
P0-47	FaultCounter Internal Fault (IO)	Number of communication errors between the power section and control section detected by the $\mathrm{I} / 0$ processor since the last time the unit was switched on
P0-48	FaultCounter Internal Fault (DSP)	Number of communication errors between the power section and control section detected by the power section processor since the last time the unit was switched on
P0-49	FaultCounter Communication Loss	Number of Modbus communication errors detected by the I/O processor since the last time the unit was switched on
P0-50	FaultCounter CANopen COM Loss	Number of CANopen communication errors detected by the I/O processor since the last time the unit was switched on
P0-51	Input Data1 Value	Input Data 1, Value Process Input Data (PDI, received from the fieldbus). There are 4 entries for this parameter (PDI1 ... PDI4). By default it shows the CANopen exchanged data. In case a fieldbus module is present inside the drive and P1-12 is set to 4 , the fieldbus data are displayed.
P0-52	Ouput Data1 Value	Output Data 1, value Process Output Data (PDO, received from the fieldbus). There are 4 entries for this parameter (PDO1 ... PDO4). By default it shows the CANopen exchanged data. In case a fieldbus module is present inside the drive and P1-12 is set to 4 , the fieldbus data are displayed.
P0-53	-	Phase U, current ofset and reference (value for diagnosis in case of problems)
P0-54	-	Phase V, current ofset and reference (value for diagnosis in case of problems)
P0-55	-	Reserved Parameter
P0-56	Brake Chopper t-On	1st line: max. On Time of the Brake Chopper 2nd line: Duty Cycle
P0-57	Stator voltage	U_{d} and U_{q} of the stator voltage. 1 st value $=U_{d}$ ("d" at the beginning of the line) Pressing the UP key on the drive keypad the display will change to U_{q} ("q" at the beginning of the line).
P0-58	Encoder Speed	Encoder Feedback Speed (If Encoder is present) Displayed in Hz or rpm
P0-59	f-RefOffreq-Ref	Speed reference received by a frequency signal
P0-60	n-Slip	Motor Slip Speed Calculated. Displayed in Hz or rpm
P0-61	Relay hysteresis	Switching hysteresis of the Output Relays RO1 and RO2 in Hz resp. rpm. Display value $=$ P6-04 \times P1-01 Remark: Only in cases where P2-11 and/or P2-13 are set to 2 or 3 .

5 Parameter

5.1 "Monitor" parameter group 0

Parameter	Designation	Description
P0-62	DroopFeedback	Difference in speed of two motors to achieve an equal load sharing. Displayed in Hz or rpm. $\rightarrow \text { P6-09 }$
P0-63	f-PostRamp	Speed reference after the ramp
P0-64	Actual Switching Frequency	Actual switching frequency. The value may be less than the one set with P2-24. $\rightarrow \mathrm{P} 6-02$
P0-65	t-PowerOn	Total time for which the drive was powered up since the day of manufacture. Displayed in hours, minutes and seconds. Pressing the UP key on the drive keypad will change the display from "hours" to "minutes and seconds"
PO-66	UserProgramID	ID of a program generated by the Function Block Editor. This ID can be set by the user when developing the program.
P0-67	M-Ref Interface	Torque reference received via fieldbus interface
P0-68	t-accNetwork	Ramp time received via fieldbus interface. Remark: This value is only active with P5-07 = 1
P--69	FaultCounter Option COM Loss	Number of communication errors in an optional module since the last time the unit was switched on
P0-70	OptionlD0	Identification Code of an option installed
P0-71	OptionSignature	Fieldbus Module Identifier (Option)
P0-72	T-Controlboard	Internal device ambient temperature
P0-73	24h timer	Content of an internal 24 h timer in minutes. The timer starts to count when power is applied to the drive, and allows simple time based functions to be programmed with the function block editor.
P0-74	L1 Input Voltage	Input voltage L1
P0-75	L2 Input Voltage	Input voltage L2
P0-76	L3 Input Voltage	Input voltage L3
P0-77	Encoder Puls counter	Encoder Feedback Value The two values (High Word and Low Word) contain the 32 Bit value of the Encoder Input
P0-78	-	Test Parameter
P0-79	Application Software Version	I/O Controller / Application SW Version Pressing the UP key on the drive keypad will change the display to System Software
P0-79	System Software Version	System Software Version
P0-80	Value@Pointer	Pointer on an internal parameter Displays the value selected with P6-28.

5.2 Parameter group 1 ("Basic")

Table 22: Parameter group 1 ("Basic")

Parameter	RUN	Designation	Value	Description	DS
P1-01	\checkmark	f-max	500 Hz max.	Maximum output frequency This can be set to any value between " f-min" and $5 x$ the "motor nom frequency". - "Motor Nom Speed" $(P 1-10)=0$, the maximum speed limit will be displayed in Hz . - "Motor Nom Speed" (P1-10) >0, the maximum speed limit will be displayed in rpm.	50.0 Hz
P1-02	\checkmark	f-min		Minimum output frequency This can be set to any value between 0 and "f-max" (P1-01) - "Motor Nom Speed" (P1-10) = 0, the minimum speed limit will be displayed in Hz . - "Motor Nom Speed" (P1-10) >0, the minimum speed limit will be displayed in rpm.	0.0 Hz
P1-03	\checkmark	t-acc	$0.0-600 \mathrm{~s}$	Sets the acceleration ramp time in seconds. The time interval set in "t-acc" represents the time taken to accelerate from zero to "Motor Nom Frequency" (P1-09).	5.0 s
P1-04	\checkmark	t-dec	$0.0-600 \mathrm{~s}$	Sets the deceleration ramp time in seconds. The time interval set in "t-dec" represents the time taken to decelerate from "Motor Nom Frequency" (P1-09) to zero.	5.0 s
P1-05	\checkmark	Stop Mode	$0, \ldots, 4$	Determines the action taken by the drive in the event of the drive enable signal being removed. This parameter is also used to disable (P1-05 = 0 or 1) or enable (P1-05 = 2 or 3) a brake chopper. Possible values: - $\mathbf{0}$: Ramp to stop. When the enable signal is removed, the drive will ramp to stop, with the rate controlled by "t-dec" (P1-04). A brake chopper (where fitted) is always disabled. - 1: Coasting. When the enable signal is removed, the drive output is immediately disabled, and the motor will coast (freewheel) to stop. If the load can continue to rotate due to inertia and may possibly be re-enabled whilst the motor is still rotating, the Spin Start Function shall be enabled with P2-26. A brake chopper (where fitted) is always disabled, even during normal operation. - 2: Ramping. When the enable signal is removed, the drive will ramp to stop, with the rate controlled by " t-dec" (P1-04). In this mode the brake chopper (where fitted) is always enabled. - 3: Coasting. When the enable signal is removed, the drive output is immediately disabled, and the motor will coast (freewheel) to stop. If the load can continue to rotate due to inertia and may possibly be re-enabled whilst the motor is still rotating, the Spin Start Function shall be enabled with P2-26. In this mode the brake chopper (where fitted) is enabled during normal operation, but not after removing the enable signal. - 4: AC flux braking. When stopping the drive, AC flux braking is used to reduce the stopping time. In this mode the brake chopper is disabled, even during normal operation.	1

5.2 Parameter group 1 ("Basic")

Parameter	RUN	Designation	Value	Description	DS
P1-06	\checkmark	EnergyOptimizer	0, 1	EnergyOptimizer When energy optimization is activated, the motor voltage is dynamically varied, dependent on load. This results in reduced voltage being applied to the motor on light load, significantly reduce energy consumption. Available settings: - 0: OFF - 1:ON Remark: This mode of operation is less suitable for dynamic applications where the load conditions can suddenly increase significantly.	0
P1-07	-	Motor Nom Voltage		Defines the Motor rated voltage. If P1-07 $=0$ the DC bus voltage compensation is disabled (in V/f mode only) and the output voltage will be equal to the incoming supply voltage when operating at "Motor Nom Frequency" (P1-09).	$U_{\text {e }}$
P1-08	-	Motor Nom Current		Motor rated current. By setting the "Motor Nom Current" in the drive, the motor overload protection is configured to match the motor rating. If the motor current exceeds the value set with P1-08, the flashing decimal points on the display will indicate that there is an overload. If this situation persists for a prolonged period of time, the device may switch off due to overloading. Display: $1 . t-t_{r} P$	I_{e}
P1-09	-	Motor Nom Frequency		The rated frequency of the motor. This is the frequency at which "Motor Nom Voltage" is applied to the motor. Below this frequency, the applied motor voltage will be reduced. Above this frequency the voltage remains limited to "Motor Nom Voltage"	50 Hz
P1-10	\checkmark	Motor Nom Speed		Motor rated speed - P1-10 $=0$: the speed of the motor will be displayed in Hz . - P1-10 >0 : the speed related parameters (f-max, $f-$ min etc.) will be displayed in rpm. The slip compensation is also activated, where the shaft speed of the motor is maintained under varying load conditions by compensating for the load-dependent slip of the motor. If "Motor Nom Speed" = motor synchronous speed (e.g. 3000 rpm for a 2 -pole 50 Hz motor), the speed can be displayed in rpm without activating the slip compensation. Remark: When the drive is operated with the optional Encoder Feedback Interface, this parameter must be set to the correct nameplate rpm of the connected motor.	0 rpm
P1-11	-	V-Boost		Voltage is used to increase the applied motor voltage at low output frequency, in order to improve low speed and starting torque. Excessive voltage boost levels may result in increased motor current and temperature, and forced ventilation may be required. An automatic setting (Auto) is also possible, whereby the drive will automatically adjust this parameter based on the motor parameters measured during an Autotune. Remark: This parameter will only be enabled when using speed control ($\operatorname{expanded} \mathrm{V} / \mathrm{Hz}, \mathrm{P} 4-01=2$).	$\begin{aligned} & 2.5 \% \text { of } \\ & \text { P1-07 } \end{aligned}$

Parameter	RUN	Designation	Value	Description	DS
P1-12	-	Local ProcessData Source	$\begin{aligned} & 0, \ldots, 6, \\ & 9, \ldots, 11 \\ & 13 \end{aligned}, \begin{aligned} & \text { 7, 8: } \\ & \text { reserved } \end{aligned}$	Local Configuration of Command and Reference Sources Possible values: - $\mathbf{0}$: Terminal Control. The drive responds directly to signals applied to the control terminals. - 1: Uni-directional digital reference. The drive can be controlled in the forward direction only using a digital reference (via internal or remote Keypad or terminals) - 2: Bi-directional digital reference. The drive can be controlled in the forward and reverse directions using a digital reference (via internal or remote Keypad or terminals). Pressing the keypad START button toggles between forward and reverse. - 3: PID controller. The output frequency will be controlled by the internal PID controller - 4: Fieldbus Control. Control via Modbus RTU if no fieldbus option is present, otherwise control from the fieldbus option module - 5: Slave Mode. The Variable Frequency Drive acts as a slave to a connected drive operating in Master Mode. - 6: CANopen Control. Control via the CANopen bus connected to the RJ45 serial interface connector. - 7: Reserved - 8: Reserved - 9: SmartWire Device Control and speed ref. - 10: SmartWire Device Control and terminal speed ref. - 11: Terminal Control and SmartWire Device speed ref. - 12: not permissible - 13: SmartWire Device Control and speed ref. Digital input sets enable.	0

5.2 Parameter group l ("Basic")

Parameter	RUN	Designation	Value	Description	DS
P1-13	-	DI Config Select	0, 1, $\ldots, 21$	Configuration of digital inputs with a fix set of combinations The setting of P1-13 determines the input configuration depending on P1-12. Configuration in terminal mode (P01-12 $=0$): - $\mathbf{0}$: User defined - 1: [START] [DIR] [Select REF / f-Fix] [Al1 REF] [Select f-Fix Bit0] - 2: [START] [DIR] [Select f-Fix Bit0] [Select f-Fix Bit1] [Select f-Fix Bit2] - 3: [START] [DIR] [Select REF / f-Fix1] [Al1 REF] [AI2 Torque REF] - 4: [START] [DIR] [Select REF / f-Fix1] [Al1 REF] [Select t-dec1 / t-Quick-Dec] - 5: [START] [DIR] [Select REF / Al2] [Al1 REF] [Al2 REF] - 6: [START] [DIR] [Select REF / f-Fix1] [Al1 REF] [EXTFLT] - 7: [START] [DR] [Select f-Fix Bit0] [Select f-Fix Bit1] [EXTFLT] - 8: [START] [DIR] [Select f-Fix Bit0] [Select f-Fix Bit1] [Select t-dec1 / t-Quick-Dec] - 9: [START] [DIR] [Select f-Fix Bit0] [Select f-Fix Bit1] [Select REF / f-Fix] - 10: [START] [DIR] [UP] [DOWN] [Select REF / f-Fix1] - 11: [FWD] [REV] [Select REF / f-Fix] [Al1 REF] [Select f-Fix Bit0] - 12: [FWD] [REV] [Select f-Fix Bit0] [Select f-Fix Bit1] [Select f-Fix Bit2] - 13: [FWD] [REV] [Select REF / f-Fix1] [AI1 REF] [AI2 Torque REF] - 14: [FWD] [REV] [Select REF / f-Fix1] [A11 REF] [Select t-dec1 / t-Quick-Dec] - 15: [FWD] [REV] [Select REF / Al2] [Al1 REF] [Al2 REF] - 16: [FWD] [REV] [Select REF / f-Fix1] [Al1 REF] [EXTFLT] - 17: [FWD] [REV] [Select f-Fix Bit0] [Select f-Fix Bit1] [EXTFLT] - 18: [FWD] [REV] [Select f-Fix Bit0] [Select f-Fix Bit1] [Select t-dec1 / t-Quick-Dec] - 19: [FWD] [REV] [Select f-Fix Bit0] [Select f-Fix Bit1][Select REF / f-Fix] - 20: [FWD] [REV] [UP] [DOWN] [Select REF / f-Fix1] - 21: [Pulse FWD (NO)] [Pulse STOP (NC)] [Pulse REV (NO)] [AI1 REF] [Select REF / f-Fix1] Select REF = reference defined by P9-10, ..., P9-17 and selected by P9-18 ... P9-20. Default: analog reference at Al1	11
P1-14		Password		Entry of the password to get access to the extended parameter set. The value to be put in is determined by the level to be accessed. - Level 2 (Access to parameter groups 0 to 5): P1-14 = P2-40 (Default: 101) - Level 3 (Access to parameter groups 0 to 9): P1-14 = P6-30 (Default: 201)	Level 2: 101 Level 3: 201

5.3 Parameter group 2 ("Functions")

Table 23: Parameter group 2 ("Functions")

Parameter	RUN	Designation	Value	Description	DS
P2-01	\checkmark	f-Fix 1	-	Preset Fixed Frequency 1 Value can be adjusted between f-min and f-max. Selection via a digital control signal.	5.0 Hz
P2-02	\checkmark	f-Fix2	-	Preset Fixed Frequency 2 Value can be adjusted between f-min and f-max. Selection via a digital control signal.	10.0 Hz
P2-03	\checkmark	f-Fix3	-	Preset Fixed Frequency 3 Value can be adjusted between f-min and f-max. Selection via a digital control signal.	25.0 Hz
P2-04	\checkmark	f-Fix4	-	Preset Fixed Frequency 4 Value can be adjusted between f-min and f-max. Selection via a digital control signal.	50.0 Hz
P2-05	\checkmark	f-Fix5	-	Preset Fixed Frequency 5 Value can be adjusted between f-min and f-max. Selection via a digital control signal.	0.0 Hz
P2-06	\checkmark	f-Fix6	-	Preset Fixed Frequency 6 Value can be adjusted between f-min and f-max. Selection via a digital control signal.	0.0 Hz
P2-07	\checkmark	f-Fix7	-	Preset Fixed Frequency 7 Value can be adjusted between f-min and f-max. Selection via a digital control signal. When Hoist mode is active (P2-18 = 8), this parameter defines the frequency or speed which will be used to generate a holding torque prior to releasing the mechanical brake. If P1-10 > 0 the value is entered and displayed in rpm. This parameter must be set > 0 when using hoist mode and the value should be high enough to ensure the connected motor can develop sufficient torque to hold the maximum load capacity.	0.0 Hz
P2-08	\checkmark	f-Fix8	-	Preset Fixed Frequency 8 Value can be adjusted between f-min and f-max. Selection via a digital control signal. When hoist mode is active (P2-18 = 8) this parameter defines the frequency or speed at which the drive will signal the motor brake to close when stopping. If $\mathrm{P} 1-10>0$ the value is entered and displayed in rpm. This parameter must be set > 0 when using hoist mode and the value should be high enough to ensure the connected motor can develop sufficient torque to hold the maximum load capacity.	0.0 Hz
P2-09	\checkmark	f-Skip1	-	Centre point of the frequency band defined by f-Skip-Band1 in which the drive doesn't work in steady-state.	0.0 Hz
P2-10	\checkmark	f-SkipBand1	-	Skip frequency band width Defines the frequency range around f-Skip1 in which the drive doesn't work in steady-state to avoid mechanical resonances in the application. - Lower limit: = P2-09 - P2-10/2 - Upper limit = P2-09 + P2-10/2 The definition applies for both senses of rotation.	0.0 Hz

5.3 Parameter group 2 ("Functions")

Parameter	RUN	Designation	Value	Description	DS
P2-11	\checkmark	AD01 Function \& Mode	$0,1, \ldots, 11$	Selection of kind (analog or digital) and function of ADO1 / A01 Possible values: P2-11 $=0, \ldots, 7$: digital output - 0: RUN, enable (FWD/REV) - 1: READY, VSA ready for operation - 2: Speed: speed reference value - 3: Speed $>$ Speed Zero - 4: Speed; ON: \geqq P2-16 / OFF: < P2-17 - 5: Motor current; ON: \geqq P2-16 / OFF: <P2-17 - 6: Motor torque; ON: \geqq P2-16 / OFF: <P2-17 - 7: Analog input AI2; ON: \geqq P2-16 / OFF: < P2-17 P2-11 = 8, ...,11: Analog output - 8: Output frequency (0-100 \% f-max (P1-01)) - 9: Motor current (0-200\% Motor rated current (P1-08)) - 10: Motor torque (0-200 \% Motor rated torque) - 11: Motor power (0-200 \% Motor rated power)	8
P2-12	\checkmark	A01 SignalFormat	$0,1, \ldots, 5$	Selection of the signal format at Analog Output 1 (A01) Possible values: - 0:0-10 V - 1:10-0V - 2: 0-20 mA - 3: 20 - mA - 4: $4-20 \mathrm{~mA}$ - 5: $20-4 \mathrm{~mA}$	0
P2-13	\checkmark	ADO2 Function \& Mode	$0,1, \ldots, 11$	Selection of kind (analog or digital) and function of ADO2 / A02 Possible values: P2-13 $=0, \ldots, 7$: digital output - 0: RUN, enable (FWD/REV) - 1: READY, VSA ready for operation - 2: Speed: speed reference value - 3: Speed > Speed Zero - 4: Speed; ON: \geqq P2-19 / OFF: < P2-20 - 5: Motor current; $\mathrm{ON}: \geqq$ P2-19 / OFF: < P2-20 - 6: Motor torque; ON: \geqq P2-19 / OFF: <P2-20 - 7: Analog input AI2; ON: > P2-19 / OFF: < P2-20 P2-13 = 8, $\ldots, 11$: Analog output - 8: Output frequency (0-100 \% f-max (P1-01)) - 9: Motor current ($0-200 \%$ Motor rated current (P1-08)) - 10: Motor torque (0-200\% Motor rated torque) - 11: Motor power (0-200 \% Motor rated power)	9
P2-14	\checkmark	A02 SignalFormat	$0,1, \ldots, 5$	Selection of the signal format at Analog Output 2 (AO2) Possible values: - 0:0-10 V - 1:10-0V - 2: $0-20 \mathrm{~mA}$ - 3: $20-0 \mathrm{~mA}$ - 4: 4-20 mA - 5: $20-4 \mathrm{~mA}$	0

Parameter	RUN	Designation	Value	Description	DS
P2-15	\checkmark	RO1 Function	$\begin{aligned} & \hline 0,1, \ldots, 7 \\ & 10,11,13 \end{aligned}$	Selection of the function of output relay RO1 Possible values: - 0: RUN, enable (FWD/REV) - 1: READY, VSA ready for operation - 2: Speed = speed reference value - 3: Speed $>$ Speed Zero - 4: Speed; ON: \geqq P2-16 / OFF: < P2-17 - 5: Motor current; ON: \geqq P2-16 / OFF: < P2-17 - 6: Motor torque; ON: \geqq P2-16 / OFF: < P2-17 - 7: Analog input AI2; ON: > P2-16 / OFF: < P2-17 - 8: Reserved - 9: Reserved - 9: Reserved - 10: Maintenance due. The Service Interval Time (P6-24) has elapsed. - 11: Drive ready. The drive is: not in inhibit mode (STO), not in mains loss condition and not in trip condition. The mains AC power is present and the hardware enable is applied. - 12: Reserved - 13: STO (Safe Torque OFF) Status	1
P2-16	\checkmark	RO1 upper Limit		Switching ON threshold of relay RO1 \rightarrow P2-11and P2-15	100.0 \%
P2-17	\checkmark	RO1 lower Limit		Switching OFF threshold of relay RO1 \rightarrow P2-11 and P2-16	0.0\%
P2-18	\checkmark	RO2 Function	$\begin{aligned} & 0,1, \ldots, 7 \\ & 10,11,13 \end{aligned}$	Selection of the function of output relay RO2 Possible values: - O: RUN, enable (FWD/REV) - 1: READY, VSA ready for operation - 2: Speed = speed reference value - 3: Speed $>$ Speed Zero - 4: Speed; ON: \geqq P2-19 / OFF: < P2-20 - 5: Motor current; ON: \geqq P2-19 / OFF: < P2-20 - 6: Motor torque; ON: \geqq P2-19 / OFF: < P P2-20 - 7: Analog input AI2; ON: \geqq P2-19 / OFF: < P2-20 - 8: Hoist brake control. (Enables the operating mode for hoists). ON: output frequency \geqq P2-07 with START (FWD/REV) command present. OFF: output frequency \leqq P2-08 with no START (FWD/REV) command active. - 9: Reserved - 9: Reserved - 10: Maintenance due. The Service Interval Time (P6-24) has elapsed. - 11: Drive ready. The drive is: not in inhibit mode (STO), not in mains loss condition and not in trip condition. The mains AC power is present and the hardware enable is applied. - 12: Reserved - 13: STO (Safe Torque OFF) Status	0
P2-19	\checkmark	RO2 upper Limit		Switching ON threshold of relay RO2 \rightarrow P2-13 and P2-18	100.0 \%
P2-20	\checkmark	RO2 lower Limit		Switching OFF threshold of relay RO2 \rightarrow P2-13 and P2-18	0.0\%

5.3 Parameter group 2 ("Functions")

Parameter	RUN	Designation	Value	Description	DS
P2-21	\checkmark	Display Scale		Scale factor display Determines the factor for scaling the display. - When set to 0.000 the scaling is disabled. - The variable selected in P2-22 is scaled by the factor set in P2-21	0.000
P2-22	\checkmark	Display Source	0, 1, 2, 3	Display Source Selects the variable to be displayed and scaled by P2-21 Possible values: - 0: Motor Speed - 1: Motor current - 2: Analog input 2 (AI2) - 3: PO-80 with one fixed decimal place (signed)	0
P2-23	\checkmark	$t-n=0$ Wait		ZeroSpeedHoldTime Determines the time for which the drive output is held at zero speed when stopping, before the drive output is disabled.	0.2 s
P2-24	\checkmark	Switching Frequency	$0,1, \ldots, 5$	Power stage switching frequency. Higher frequency reduces the audible ringing noise from the motor, and improves the output current waveform, at the expense of increased heat losses within the drive. Possible values: - $\mathbf{0}: 4 \mathrm{kHz}$ - $1: 8 \mathrm{kHz}$ - 2: 12 kHz - 3: 16 kHz - 4: 24 kHz - 5: 32 kHz Attention: In case a sine wave filter is used, the switching frequency has to be in the range which is permissible for the filter. In this case P2-24 has to be set to twice the switching frequency mentioned on the filter. Example: Sine wave filter for $4 \mathrm{kHz} \rightarrow$ Setting of P2-24: 8 kHz !	3
P2-25	\checkmark	t-QuickDec		Quick Stop Ramp The ramp is activated: - If DI1 and DI2 (terminals 2 and 3) are activated simultaneously and P1-13 $=11, \ldots, 20$ - If the mains voltage drops out and $\mathrm{P} 2-38=2$. If P2-25 $=0.0$, the drive will coast without a ramp.	0.00 s

Parameter	RUN	Designation	Value	Description	DS
P2-26	\checkmark	Spin Start Enable	0, 1, 2	Spin Start Enable Enables spin start, where the drive starts from the detected motor speed. A short start delay is possible if the rotor is stationary. Recommended for applications where the motor spins when applying the FWD/REV signal to the drive (high inertia loads, fans ...), especially with P1-05 = 1 or 3 (coast to stop) Possible values: - 0: Spin start OFF - 1: Spin Start ON - 2: Spin Start ON on coast (P1-05 = 1 or 3), mains loss or trip due to a fault, but not before start in general. This provides a faster starting in cases where it is known that the motor is at standstill prior to enable, but spin start will still activate if the previous motor stop condition was an uncontrolled stop.	0
P2-27	\checkmark	Standby Mode		Standby Mode Possible values: - 0: Standby Mode disabled - >0: The drive will enter Standby Mode (Output disabled), if the minumum frequency ($\mathrm{P} 1-02$) is maintained for the time specified in this parameter. Operation automatically resumes as soon as the reference increases above P1-02.	0.0 s
P2-28	-	Slave SpeedScalingControl	$0,1, \ldots, 3$	SlaveSpeedScalingControl Enabled in slave mode only (P1-12 = 5). The digital setpoint value can be multiplied by a preset factor and/or adjusted with an analog value. Possible values: - $\mathbf{0}$: No scaling or offset is applied - 1: Speed = Digital reference \times P2-29 - 2: Speed $=$ (Digital reference \times P2-29 $)+$ Reference at Analog Input 1 (Al1, Terminal 6) - 3: Speed = (Digital reference x P2-29) x Reference at Analog Input 1 (Al1, Terminal 6)	0
P2-29	\checkmark	Slave SpeedScalingFactor	$\begin{aligned} & -500.0- \\ & +500 \% \end{aligned}$	SlaveSpeedScalingFactor Setting of the Scaling Factor (see P2-28)	100.0 \%
P2-30	-	Al1 Signal Range	$0,1, \ldots, 7$	Configures the Analog input 1 for the selected signal source type. Possible values: - 0:0-10V - 1:10-0V - 2: bipolar 0-10 V - 3: 0-20 mA - 4: t $4-20 \mathrm{~mA}$ (Trips in case of wire break) - 5: r 4 - 20 mA (Ramps to f-fix8 (P2-08) in case of wire break) - 6: t $20-4 \mathrm{~mA}$ (Trips in case of wire break) - 7: r $20-4 \mathrm{~mA}$ (Ramps to f-fix8 (P2-08) in case of wire break)	0
P2-31	\checkmark	Al1 Gain	$\begin{aligned} & 0.0- \\ & 2000.0 \% \end{aligned}$	Scaling of the Analog Input 1 Output value = Input value x Scaling. The scaling is also applied to an Offset, set with P2-32 Example: P2-30 $=0 \ldots 10 \mathrm{~V}, \mathrm{P} 2-31=200 \%$: at 5 V the motor turns with max speed (P1-01) (5 V x $200 \%=10 \mathrm{~V}$)	100.0 \%

5.3 Parameter group 2 ("Functions")

Parameter	RUN	Designation	Value	Description	DS
P2-32	\checkmark	Al1 Offset	$\begin{aligned} & -500.0- \\ & +500 \% \end{aligned}$	Offset Analog Input 1 Sets an offset as a percentage of the full scale range of the Analog Input 1 (Al1), which is subtracted from the signal at Al1. Positive values of P2-32 lead to a decrease, negative ones to an increase.	0.0 \%
P2-33	\checkmark	Al2 Signal Range	$0,1, \ldots, 7$	Configures the Analog input 2 for the selected signal source type. Possible values: - 0:0-10 V - 1:10-0V - 2: Ptc-th (Thermistor connecvtion) - 3: 0-20 mA - 4: t $4-20 \mathrm{~mA}$ (Trips in case of wire break) - 5: r 4 - 20 mA (Ramps to f-fix8 (P2-08) in case of wire break) - 6: t $20-4 \mathrm{~mA}$ (Trips in case of wire break) - 7: r $20-4 \mathrm{~mA}$ (Ramps to f-fix8 (P2-08) in case of wire break)	0
P2-34	\checkmark	Al2 Gain	$\begin{aligned} & 0.0- \\ & 2000.0 \% \end{aligned}$	Scaling of the Analog Input 2 Output value $=$ Input value \times Scaling. The scaling is also applied to an Offset, set with P2-35 Example: $\mathrm{P} 2-33=0-10 \mathrm{~V}, \mathrm{P}-2-34=200 \%$: at 5 V the motor turns with max speed (P1-01) ($5 \mathrm{~V} \times 200 \%=10 \mathrm{~V}$)	100.0\%
P2-35	\checkmark	Al2 Offset		Offset Analog Input 2 Sets an offset as a percentage of the full scale range of the Analog Input 2 (AI2), which is subtracted from the signal at AI2. Positive values of P2-35 lead to a decrease, negative ones to an increase.	100.0\%
P2-36	\checkmark	Start Mode	$0,1, \ldots, 6$	Defines the behavior of the drive relating to the enable digital input and also configures the automatic restart function. Possible values: - 0: Edge-r : Following power on or reset, the drive will not start if a start signal (FWD/REV) is still present. To start DC1 a rising edge is necessary. - 1: Auto-0 : Following a power on or reset, the drive will automatically start if digital input 1 is closed. - 2 ... 6: Auto-1 to 5 : Following a trip, the drive will make up to 5 attempts to restart at intervals set in P6-03. The drive must be powered down to reset the counter. The number of restart attempts are counted, and if the drive fails to start on the final attempt, the drive will trip, and will require the user to manually reset the fault. Attention: An automatic restart is only possible when the control commands are given via terminals (P1-12 $=0$, P1-12 $=11$ when, after a communication loss, the control is toggled to the terminals).	0

Parameter	RUN	Designation	Value	Description	DS
P2-37	\checkmark	Digital Reference Reset Mode	0, 1, .., 7	Defines the behavior of the drive on START when used in Keypad control or when controlled with UP/DOWN commands via terminals. This parameter is only active when P1-12: 1 or 2 (digital reference) Possible values: P2-37 $=0, \ldots, 3 \rightarrow$ Control via keypad - 0: Start at min speed - 1: Start with latest speed set with keypad - 2: Start with latest speed before switching off (typically used when multiple sources for the reference are available e.g. Manual / Automatic or Local / Remote ...) - 3: Start with f-fix 8 (P2-08) P2-37 $=4, \ldots, 7 \rightarrow$ Control via terminals (P1-13: 10 or 20) The START and STOP buttons on the keypad will be disabled. - 4: Start at min speed - 5: Start with latest speed set via terminals - 6: Start with latest speed before switching off (typically used when multiple sources for the reference are available e.g. Manual / Automatic or Local / Remote ...) - 7: Start with f-fix 8 (P2-08)	1
P2-38	\checkmark	Action@MainsLoss	0, 1, 2, 3	MainsLossStopControl Determines the behavior of an enabled drive at mains loss. Possible values: - O: Mains loss ride through. The drive will attempt to continue operating by recovering energy from the load, provided that the mains loss period is short enough and that enough energy can be recovered. The Enable signal must be present for thge whole period of mains loss, otherwise the drive stops with the ramp set in P2-25) - 1: Coast to stop The drive will immediately disable the output and the motor coasts to stop. When using this setting with high inertia loads, the Spin Start function (P2-26) may need to be enabled to have a quick restart - 2: Quick Stop (P2-25) The drive stops with the ramp set in P2-25. - 3: Mains loss disabled This setting has to be used when the drive is powered through DC bus link directly. No supply through the input terminals.	0
P2-39	\checkmark	Parameter Lock	0,1	Determines whether to lock the parameters Possible values: - 0: OFF. All parameters can be accessed and changed - 1: ON. Parameter values can be displayed, but cannot be changed. If a remote keypad is connected, parameters cannot be accessed by the remote keypad if they are locked.	0
P2-40	\checkmark	Password Level2		Defines the password which is used to get access to extended parameter set (Level 2). Access via P1-14.	101

5 Parameter

5.4 Parameter group 3 ("PID")

5.4 Parameter group 3 ("PID")

Table 24: Parameter group 3 ("PID")

Para meter	RUN	Designation	Value	Description	DS
P3-01	\checkmark	PID1		PIID) controller proportional gain Higher values will result in a larger change at the frequency inverter output frequency as a response to small changes in the feedback. Too high value can cause instability	1.0
P3-02	\checkmark	PID1 Ti		PI(D) controller integral time constant Higher values will result in a more damped response. Used in systems in which the overall process responds slowly.	1.0 s
P3-03	\checkmark	PID1 Kd		PID controller differential time constant	0.00 s
P3-04	\checkmark	PID1 Mode	0,1	PIID) controller 1 mode Possible values: - $\mathbf{0}$: direct mode. This setting is used when an increase of the feedback signal should lead to a decrease of the motor speed. - 1: inverse mode. If an increasing feedback signal should increase the speed of the motor, use inverse mode.	0
P3-05	\checkmark	PID1 Set Point 1 Source	0, 1, 2	Defines the set point source 1 of controller 1 Possible values: - O: digital set point signal, set with P3-06 - 1: analog input 1 - 2: analog input 2	0
P3-06	\checkmark	PID1 Set Point Digital		Digital set point controller 1 Digital set point of the PID controller in case P3-05 $=0$	0.0 \%
P3-07	\checkmark	PID1 Out upper limit		PID1-OutLimHigh max. output value of the PI(D) controller	100.0 \%
P3-08	\checkmark	PID1 Out lower limit		PID1-OutLimLow min. output value of the PI(D) controller	0.0 \%
P3-09	\checkmark	PID1 Output LimitSelect	0, 1, 2, 3	Source selection for the output limitation Possible values: - 0: The output range of the PID controller is limited by P3-07 and P3-08 - 1: Upper limit = value at analog input 1 ; lower limit = P3-08 - 2: Upper limit = P3-07; lower limit = value at analog input 1 - 3: The output value from the PID controller is added to the speed reference applied to analog input 1	0
P3-10	\checkmark	PID1 Feedback 1 Source	0,1	Defines the feedback source 1 of controller 1 Possible values: - O: analog input 2 (Al2) - 1: analog input 1 (Al1)	0

Para meter	RUN	Designation	Value	Description	DS
P3-11	\checkmark	PID1 Error Ramp		PI(D)1 Error Ramp Defines a threshold PID error level, whereby if the difference between the setpoint and the feedback values is less than the set threshold, the internal ramp times of the drive are disabled. Where a greater PID error exists, the ramp times are enabled to limit the rate of change of motor speed on large PID errors, and react quickly on small errors. This parameter is intended to allow the user to disable the drive internal ramps where a fast reaction of PID control is required, however by only disabling the ramps when a small PID error exists, the risk of possible over current or over voltage trips being generated are reduced. Setting to 0.0 means that the drives ramps are always enabled.	0.0 \%
P3-12	\checkmark	PID1 feedback 1 DispScale		PID1 FeedBack Display scaling factor Applies a scaling factor to the displayed PID feedback, allowing the user to display the actual signal level from a transducer, e.g. $0 . . .15$ bar etc.	0.000
P3-13	\checkmark	PID1 WakeUpLevel		Wake-up level controller 1 Sets an error level (difference between the PID reference and feedback values) above which the PID controller will wake from Standby mode.	5.0 \%
P3-14	-	Reserved Parameter		Reserved Parameter	0
P3-15	-	Reserved Parameter		Reserved Parameter	0
P3-16	-	Reserved Parameter		Reserved Parameter	0
P3-17	-	Reserved Parameter		Reserved Parameter	0
P3-18	\checkmark	PID1 ResetControl	0, 1	This parameter is used to control the reset behavior of the PID loop. Possible values: - O: PID loop will run continuously as long as P gain (P3-01) ist not zero - 1: PID loop will only run when the drive is enabled. If the drive is not running, the PID output will be reset to zero (including the integral result)	0

5.5 Parameter group 4 ("Mode")

Table 25: Parameter group 4 ("Mode")

| Para-
 meter | RUN | Vesignation | Description |
| :--- | :--- | :--- | :--- | :--- |
| P4-01 | | | |

Parameter	RUN	Designation	Value	Description	DS
P4-08	\checkmark	M-Min Motoring		M-Min Motoring When working in Vector mode (P4-01 $=0$ or 1) this parameter defines a min. torque limit. When the drive is enabled, it will always attempt to maintain this torque on the motor. Caution: this can lead to situations where the setpoint frequency is exceeded!	0 \%
P4-09	\checkmark	M-Max Generative		M-Max Generative When working in Vector mode (P4-01 =0 or 1) this parameter defines the max. torque limit during regeneration.	100 \%
P4-10	-	f-MidV/f		Frequency to shape V/f curve When operating in V/f mode (P4-01 = 2) this parameter is used in conjunction with P4-11 and sets a frequency point at which the voltage set in $\mathrm{P} 4-11$ is applied to the motor. Attention: Care must be taken to avoid overheating and damaging the motor when using this function!	0.0 \%
P4-11	\checkmark	V-MidV/f		Voltage to shape V/f curve Used in conjunction with P4-10.	0.0 \%
P4-12	\checkmark	T-Memory Enable	0,1	When enabled, the motor thermal memory retention function will save the calculated motor thermal history on drive power down, using this saved value as the starting value on next power up. If this function is disabled, the motor thermal history is reset to zero on every power up. Possible values: - 0: Thermal memory OFF - 1: Thermal memory ON	0
P4-13		Change Phasesequence Motor	0,1	Changes the sequence of the output phases. This prevents, that two phases of the motor cable have to be changed in case the motor runs in the wrong direction. - $0=\mathrm{U}, \mathrm{V}, \mathrm{W}(\mathrm{cw})$ - $1=\mathrm{U}, \mathrm{W}, \mathrm{V}(\mathrm{ccw})$ Remark: This parameter has to be set to " 0 " when using encoder feedback.	0

5 Parameter

5.6 Parameter group 5 ("Bus")

5.6 Parameter group 5 ("Bus")

Table 26: Parameter group 5 ("Bus")

Parameter	RUN	Designation	Value	Description	DS
P5-01	\checkmark	PDP address		The drive's unique address on a communication network	1
P5-02	\checkmark	CANO Baudrate	0, 1, 2, 3	CANopen Baudrate Possible values: - 0: $125 \mathrm{kBit} / \mathrm{s}$ - 1: $250 \mathrm{kBit} / \mathrm{s}$ - 2: $500 \mathrm{kBit} / \mathrm{s}$ - 3: $1000 \mathrm{kBit} / \mathrm{s}$	2
P5-03	\checkmark	RS485-0 Baudrate	0, 1, .., 4	RS485 Baudrate Possible values: - 0: $9.6 \mathrm{kBit} / \mathrm{s}$ - 1: $19.2 \mathrm{kBit} / \mathrm{s}$ - $2: 38.4 \mathrm{kBit} / \mathrm{s}$ - 3: $57.6 \mathrm{kBit} / \mathrm{s}$ - 4: $115.2 \mathrm{kBit} / \mathrm{s}$	4
P5-04	\checkmark	RS485-0 ParityType	0, 1, 2, 3	RS485 0 Parity Type Possible values: - 0: No parity, 1 stop bit ($\mathrm{N}-1$) - 1: No parity, 2 stop bits (N-2) - 2: Odd parity, 1 stop bit (0-1) - 3: Even parity, 1 stop bit ($\mathrm{E}-1$)	0
P5-05	\checkmark	Modbus RTUO COM Timeout		Timeout With an active communication link, if a valid telegram is not received by the drive within the period set with this parameter, the drive will react as set in $\mathrm{P} 5-06$.	1.0 s
P5-06	\checkmark	Action@Modbus RTU Fault	0, 1, 2, 3	Modbus communication loss error Possible values: - 0: Switch off - 1: Ramps down to a full stop and is switched off. - 2: Ramps down to a full stop; no fault message. - 3: Ramps to fixed frequency 8 (P2-08).	0
P5-07	\checkmark	FieldbusRampControl	0,1	Fieldbus Ramp Control Possible values: - 0: OFF. Ramps are controlled from internal drives parameters - 1: ON. Ramps are controlled by the fieldbus.	0

Parameter	RUN	Designation	Value	Description	DS
P5-08	\checkmark	NETSendPZD4	$0,1, \ldots, 7$	Configuration of the 4th process data word PDO-4 from the drive to the network master during cyclic communication. Possible values: - $\mathbf{0}$: Torque as percentage value with one decimal place, e.g. $123=12.3 \%$ - 1: Output power in kW with 2 decimal places, e.g. $400=4.00 \mathrm{~kW}$ - 2: Status of the digital inputs (DI). Bit $0=$ Status DII, Bit 1 = Status DI2 ...) - 3: Signal level at Analog Input 2 (Al2). $0-1000=0-100.0 \%$ - 4: Heatsink temperature. $0-100=0-100^{\circ} \mathrm{C}$ - 5: User register 1. Configuration with Function Block Editor - 6: User register 2. Configuration with Function Block Editor - 7: P0-80 value (Selection via P6-28)	0
P5-09	-	Reserved Parameter		Reserved Parameter	-
P5-10	-	Reserved Parameter		Reserved Parameter	-
P5-11	-	Reserved Parameter		Reserved Parameter	-
P5-12	\checkmark	NETSendPZD3	$0,1, \ldots, 7$	Configuration of the 3rd process data word PDO-3 from the drive to the network master during cyclic communication. Possible values: - 0: Motor current in A with one decimal place, e.g. $100=10.0 \mathrm{~A}$ - 1: Output power in kW with 2 decimal places, e.g. $400=4.00 \mathrm{~kW}$ - 2: Status of the digital inputs (DI). Bit $0=$ Status DII, Bit $1=$ Status DI2 \ldots - 3: Signal level at Analog Input 2 (Al2). $0-1000=0-100.0 \%$ - 4: Heatsink temperature. $0-100=0-100^{\circ} \mathrm{C}$ - 5: User register 1. Configuration with Function Block Editor - 6: User register 2. Configuration with Function Block Editor - 7: P0-80 value (Selection via P6-28)	0
P5-13	\checkmark	NETReceivePZD4	0,1	Configuration of the 4th process data word PDI-4 from the network master to the drive during cyclic communication. Possible values: - 0: User defined ramp times with 2 decimal places - 1: User register 4. Configuration with Function Block Editor or via Parameters in group 9.	0
P5-14	\checkmark	NETReceivePZD3	0, 1, 2	Configuration of the 3rd process data word PDI-3 from the network master to the drive during cyclic communication. Possible values: - 0: Torque Reference/Limit. $-5000-+5000=$ $-500.0 \%-+500.0 \%$ - 1: User defined PID reference. $0-1000=0 \%-100.0 \%$ - 2: User register 3. Configuration with Function Block Editor or via Parameters in group 9 .	0

5 Parameter

5.6 Parameter group 5 ("Bus")

Parameter	RUN	Designation	Value	Description	DS
P5-15	\checkmark	ParameterAccess	0, 1	Parameter access Possible values: - 0: All parameters can be changed from any source. - 1: All parameters are locked and can only be changed via SmartWire-DT.	0
P5-16	\checkmark	Action@Communication Loss		Number of Modbus communication errors detected by the I/O processor since the last time the unit was switched on Possible values: - 0: No response - 1: Output warning; drive continues to run - 2: Stop if ramp active - 3: Run-down - 4: Switch off	0
P5-17		Modbus RTUO Response Delay	$0, \ldots, 16$	Delays the response to Modbus devices, which are not fully compliant with the modbus specification and require a longer delay time between telegrams The setting corresponds to the time, which is necessary to transmit $0-16$ Bytes. The exact delay time depends on the baudrate.	0

5.7 Parameter group 6 ("extended")

Table 27: Parameter group 6 ("extended")

Parameter	RUN	Designation	Value	Description	DS
P6-01	-	FirmwareUpgrade Enable	0, 1, 2, 3	Firmware Upgrade Enable Possible values: - 0: no upgrade possible - 1: upgrade control part and power part - 2: upgrade control part only - 3: upgrade power part only Remark: This function cannot be activated by using the DrivesConnect software	0
P6-02	\checkmark	Auto Thermal Management	$0,1, \ldots, 5$	AutoThermalManagement In case of too high temperature at the heatsink, the drive reduces the switching frequency set with P2-24 to reduce the likelihood of an overtemperature trip. P6-02 determines the lower limit of the reduction. Possible values: - 0: 4 kHz - 1: 8 kHz - 2: 12 kHz - 3: 16 kHz - $4: 24 \mathrm{kHz}$ - 5: 32 kHz Attention: In cases where a sine wave filter is used in the drive's output circuit, the switching frequency has to be kept constant to avoid resonances. In this cases P2-24 and P6-02 have to be set to the same value.	0
P6-03	\checkmark	Auto Reset Delay		AutoResetDelay Determines the time which will elapse between consecutive drive reset attempts when Auto Reset is enabled in P2-36.	20 s
P6-04	\checkmark	RO1 n-Hysteresis		Speed dependant hysteresis for Relay Outputs This parameter is used in conjunction with P2-11 (A01 Function) and P2-13 (A02 Function), when they are set to 2 (Speed = Speed Reference Value) or 3 (Speed > Speed Zero). P6-04 defines a tolerance band to avoid "chatter" of the relay. If the speed is inside the defined band, the relay signals "Speed = Speed Reference Value" resp. "Speed > Speed Zero". The tolerance band is given in \% of P1-09. Example: P2-13 $=3$, P1-09 $=50 \mathrm{~Hz}, \mathrm{P6}-04=5 \% \rightarrow$ the relay contact closes above 2.5 Hz .	0.3 \%

5.7 Parameter group 6 ("extended")

Parameter	RUN	Designation	Value	Description	DS
P6-05	-	Encoder Feedback Enable	0, 1	EncoderFeedbackEnable Enables the operation with encoder feedback. For correct operation, ensure that the encoder is properly fitted to the motor and its wiring is connected to the encoder feedback module in accordance with the manual. Attention: Before enabling this parameter, ensure that the sense of rotation is correct by using parameter PO-58 while running in V/f mode (P4-01=2). The sign in P0-58 should match that of the speed reference. (+ = cw (FWD); - = ccw (REV)). Possible values: - O: Encoder feedback disabled - 1: Encoder feedback enabled	0
P6-06	-	Encoder PPR		EncoderPPR Number of pulses per revolution of the encoder. This value has to be set correctly to guarantee a proper operation of the drive when the encoder feedback module is enabled (P6-05 = 1). Improper setting of this parameter could cause the loss of control of the drive and / or a trip. If set to zero, encoder feedback will be disabled.	0
P6-07	\checkmark	Speed Error Limit		SpeedErrorTripLevel This parameter specifies the max. permissible error between the encoder feedback and the speed, calculated by the internal motor control algorithms. If the speed error exceeds the limit the drive will trip. When set to zero, this protection is disabled.	5.0 \%
P6-08	\checkmark	Freq RefMax		Frequency at an input terminal of the drive which, in case the speed reference is given as a frequency signal, corresponds to the max. output frequency (f-max). The frequency input signal is connected to Terminal 4 (DI3) and must be in the range between 5 kHz and 20 kHz . When set to 0 this function is disabled.	0 kHz
P6-09	\checkmark	DroopMax		max. Speed Droop Value This parameter is used to share the load between motors equally. The speed reference is changed depending on the load. - $\mathrm{P} 6-09=0$: Function disabled - P6-09 >0 defines a slip speed droop at rated torque as a percentage of "MotorNomFrequency" (P1-09). The reference for the motor speed will be reduced, depending on the load. Droop speed at rated load $=$ P6-09 x P1-09 Amount of the speed reduction $=($ P6-09 x P1-09) \times actual torque / rated torque Speed = speed reference - speed droop	0.0 \%
P6-10	\checkmark	PLC Operation Enable	0,1	Enables the use of function blocks, which are created with the function block editor. Possible values: - 0: Function blocks disabled - 1: Function blocks enabled	0
P6-11	\checkmark	t-f-Fix before Start		Defines a time after Enable for which the drive is operated with a fixed frequency. Fixed frequency specified with f-Fix7 (P2-07). This function can be used on pumps, to provide a reverse spin on start, to clear potential blockages. - Enable - ramp to fFix7 - time set with P6-11 elapses - ramp to the set speed - O: Function disabled	0 s

Parameter	RUN	Designation	Value	Description	DS
P6-12	\checkmark	t-f-Fix after Stop		Defines a time after removing the Enable signal for which the drive is operated with a fixed frequency Fixed frequency specified with f-Fix8 (P2-08). This function can be used on underground pumps, to provide an unwind of the drives shaft on stopping. - Remove Enable - ramp to fFix8 - time set with P6-12 elapses - ramp to stop. - $\mathbf{0}$: Function disabled	0 s
P6-13	\checkmark	Brake Release Delay		Determines the time before the mechanical brake is released. When hoist mode is active (P2-18=8) the control of the mechanical brake will be delayed by the time set here, to enable the motor to develop torque (adjustable with fFix7 (P2-07)).	0.2 s
P6-14	\checkmark	Brake Apply Delay		Determines the time between the signal to close the brake and disabling of the drive. When hoist mode is active ($\mathrm{P} 2-18=8$) the drive will run with the speed set in fFix8 (P2-08) for the time set here before it is disabled. The time has to be chosen in a way that it is not below the brake response time (specified by the brake manufacturer). The min. time is 0.1 s .	0.3 s
P6-15	\checkmark	Brake M-Level Release		Required motor torque level at which the mechanical brake may be released. Determines the torque in \% of the rated motor torque, which has to be present, before the mechanical brake may be released. It is used to ensure, that the motor is connected and produces sufficient torque to prevent the load dropping on release of the mechanical brake. This function is not active in V/f mode (P4-01 = 2)	8.0 \%
P6-16	\checkmark	Brake M-Level Timeout		Time, in which the motor torque, necessary for a release of a mechanical brake, has to be built up. Is this torque, set with P6-15, not built up within this time, the drive trips.	5.0 s
P6-17	\checkmark	Max Torque Timeout		Max. time, for which the motor is allowed to operate with max. torque, before the drive trips. The torque limitation is set with $\mathrm{P} 4-07$ (motor) resp. P4-09 (generator). This parameter is only active in Vector Mode (P4-01 = 0 or 1).	5.0 s
P6-18	-	DCBrakeCurrent	Auto $0-30 \%$	Amount of DC current as a percentage of the "Motor Nom Current" that is injected into the motor during DC braking. DC braking is only possible in V/f Control Mode (P4-01 = 2). The Stop Mode has to be set to "Ramp to stop" (P1-05 = 2). During DC brake the ramp, set with P2-25, is effective. The duration of a DC braking is determined by the ramp set with P2-25 and the "Zero Speed Hold Time" set with P2-23. A DC braking will always be performed when the Quick Stop Ramp is activated (see P2-25). With P6-18 = Auto the brake current is set automatically, based on stator resistance and magnetizing current. Stator resistance and magnetizing current are set to typical values by default, but can also be evaluated by performing an Auto Tune (P4-02), when necessary.	0 \%
P6-19	\checkmark	Brake Resistor		Resistance of the brake resistor in Ohms This value, together with P6-20, is used for the thermal protection of the brake resistor.	Depends on the model

5 Parameter

5.7 Parameter group 6 ("extended")

Parameter	RUN	Designation	Value	Description	DS
P6-20	\checkmark	P-Brake Resistor		Power of the brake resistor in kW Resolution: 0.1 kW . This value, together with P6-19, is used for the thermal protection of the brake resistor.	Depends on the model
P6-21	\checkmark	Brake Chopper ED Heat-Up		Brake Chopper Duty Cycle At very low temperatures $\left(<-10^{\circ} \mathrm{C}\right)$ the drive doesn't work and indicates "Under temperature" (Fault code 09 " $\theta-t$). On devices of the frame sizes FS2, FS3 and FS4 (optional) brake resistors mounted to the heatsink can be used to warm up the device. Parameter P6-21 determines the duty cycle. Attention: It is important to provide thermal protection of the brake resistor to avoid overload.	2.0 \%
P6-22	\checkmark	Reset Fan RunTime	0,1	Resets the internal fan run-time counter, indicated by $\mathrm{PO}-35$, back to 0 . Possible values: - $\mathbf{0}$: no Reset - 1: Reset: Reset of P6-22 to 0 is done automatically.	0
P6-23	\checkmark	Reset kWh Meter	0,1	Resets the energy counter Resets the internal energy counter, indicated by P0-26 (kWh) and PO-27 (MWh), back to 0 . Possible values: - $\mathbf{0}$: no Reset - 1: Reset: Reset of P6-23 to 0 is done automatically.	0
P6-24	\checkmark	Service Interval Time		Service Interval Time Defines the number of operating hours, after which the service indicator is shown on the display. With P6-25=1 the counter is set to the value defined here. The remaining time until the next service is indicated with $\mathrm{PO}-22$.	0
P6-25	\checkmark	Reset Servicelndicator		Reset Service Indicator With $\mathrm{P} 6-25=1$ the counter for the remaining hours until the next service is set to the value defined in P6-24. Reset of P6-25 to 0 is done automatically.	0
P6-26	\checkmark	A01 Scale		Scaling of the Analog Output 1 Defines a scaling factor in \% for the signal at Analog Output 1.	100.0\%
P6-27	\checkmark	A01 Offset		Offset Analog Output 1 Defines an offset in \% of 10 V for the signal at Analog Output 1. - Positive value of P6-27: Voltage at Analog Output 1 is reduced - Negative value of P6-27: Voltage at Analog Output 1 is increased	0.0 \%

Parameter	RUN	Designation	Value	Description	DS
P6-28	\checkmark	PointerToParameter		Pointer to an internal variable P6-28 defines the internal variable (or the parameter), whose value is displayed with $\mathrm{P} 0-80$. In addition the value can be transferred to a fieldbus master vir Process Data Word 3 (PZD3, to be set with P5-12) or 4 (PZD4, to be set with P5-08). P6-28 is monstly used in conjunction with the Function Block Editor.	0
P6-29	-	Save Parameters	0, 1, 2	Save parameters as default Pressing the UP, DOWN, and STOP buttons on the keypad at the same time will load a predefined parameter set onto the device. Normally, this parameter set will contain the device's factory settings. However, P6-29 can be used to change this parameter set. Possible values: - $\mathbf{0}$: deactivated - 1: The current parameter values will be stored as the default settings, and pressing the UP, DOWN, and STOP buttons on the keypad will load these values. - 2: The custom parameter set stored with P6-29 will be reset back to factory settings. P6-29 will be reset to 0 automatically.	0
P6-30	\checkmark	Password Level3		Defines the password which is used to get access to extended parameter set (Level 3). Access via P-14	201

5.8 Parameter group 7 ("Motor")

Table 28: Parameter group 7 ("Motor")

Para meter	RUN	Designation	Value	Description	DS
P7-01	\checkmark	Motor Stator Resistance R1		Stator resistance of the motor For induction and PM motors: phase to phase resistance value $\left[\mathrm{R}_{\mathrm{S}}\right]$ in Ohms	$\mathrm{f}\left(\mathrm{l}_{\mathrm{e}}\right)$
P7-02	\checkmark	Motor Rotor Resistance R2		Rotor resistance of the motor For induction motors: phase to phase resistance value $\left[R_{r}\right]$ in Ohms	$f\left(l_{\text {e }}\right)$
P7-03	\checkmark	Motor Stator Inductance d-Axis		Stator inductance of the motor, torque producing - For induction motors: Phase to phase inductance value in Henry [H] - For PM-Motors: phase d-axis inductance value [L $L_{\text {sd }}$] in Henry [H]	$f\left(l_{e}\right)$
P7-04	\checkmark	Magnetizing Current @M=0		Magnetizing current For induction motors: Magnetizing current / no load current [$l_{d} \mathrm{rms}$] Before Auto-Tune this value is approximated to $30-40 \%$ of the motor rated current (P1-08), assuming a motor power factor (cos phi) of 0.8 . It is automatically calculated on the basis of P1-08 respectively as a result of an Auto-tune.	$\mathrm{f}(\mathrm{l}$)
P7-05	\checkmark	Leak Inductance Rel		Relative Leakage Inductance of the motor Specified as a percentage [Sigma] of the stator inductance.	0.100
P7-06	\checkmark	Motor Stator Inductance q-Axis		Stator inductance of the motor, magnetizing For PM-Motors: phase q-axis inductance value [Lsd] in Henry [H]	$\mathrm{f}\left(\mathrm{l}_{\mathrm{e}}\right)$
P7-07	\checkmark	EnhancedGeneratorControl	0,1	EnhancedGeneratorControl Adaptation of the motor model in vector mode and with PM motors to achieve a better performance of the drive when regenerating. Possible values: - O: disable - 1: enable	0
P7-08	\checkmark	ParameterAdaptation	0,1	ParameterAdaptation Possible values: - 0: The motor parameters are identified once during auto tune and remain unchanged afterwards. - 1: The motor parameters are identified during auto tune. These values are used at start. During operation the drive estimates the actual values automatically and uses them. Background: Changes e.g. of the resistance because of temperature changes. This parameter is only used in Vector Mode (P4-01 = 0 / $1 / 3 / 4$)	0
P7-09	\checkmark	Overvoltage Currentlimit		Current limitation to prevent over voltage trips This parameter is only active at Speed Control with Torque Limit ($\mathrm{P} 4-01=0$) and becomes effective in case the DC link voltage exceeds a threshold. This value, set internally, is just below the one for a trip because of over voltage. P7-08 limits the torque producing current at the output, to prevent energy feedback which may lead to an over voltage trip. A small value of P7-09 limits the torque of the motor, when the DC link voltage exceeds the threshoild. A high value can lead to current distortions and to a rough behavior of the motor.	5.0 \%

Para meter	RUN	Designation	Value	Description	DS
P7-10	\checkmark	LoadlnertiaFactor		Ratio of the inertia of a complete system to the one of a motor only ($\mathrm{J}_{\text {tot }} / \mathrm{J}_{\text {mot }}$) The default value (10) can mostly be kept. It is used as feed forward, to provide the optimal torque during the acceleration phase. By using the exact value, a better reaction and dynamics of the complete system will be achieved. If the ratio of the inertias is not known, the factory setting should not be changed.	10
P7-11	\checkmark	PWM lower Limit		Minimum pulse width of the output voltage This parameter is used in applications with long motor cables. Increasing the value reduces the risk of an over current trip but it also reduces the value of the max. possible output voltage at a given input voltage.	150
P7-12	\checkmark	t-Excitation-V/f		Magnetizing period in V/f and PM Mode - Induction motors (P4-01 = 2): This parameter defines a delay time for the control of the magnetizing current after a Start signal for the drive in V/f mode. Too low values can cause an over current trip, if the acceleration ramp is very short. - PM-motors (P4-01 = 3/4): This value is used to align the rotor flux on enable.	$f(1 e)$
P7-13	\checkmark	MSC Kd		Differential gain for the speed controller Used in Vector mode. Specified in \%.	0.0 \%
P7-14	\checkmark	Torque Boost		Torque Boost at low speeds Set in \% of the motor rated current (P1-08). At lower speeds a current is injected into the motor, to achieve an effective operation. Parameter P7-15 determines, up to which speed P7-14 is effective. Setting of P7-14: - Run the motor at the lowest speed, which is required by the application - Increase value of P7-14, until the reuired torque is present as well as a smooth opreation of the motor. Note: This function is not active with Speed Control (V/f, P4-01 = 2).	0.0 \%
P7-15	\checkmark	f-Torque Boost Limit		Torque Boost Range Determines the frequency in \% of $\mathrm{P1}-09$, up to which the torque boost, set with P7-14, is active. Above this frequency the torque boost is not active.	0.0 \%
P7-16	\checkmark	PM-MotorSignalln	0, 1, 2, 3	Selection of the signal to identify the rotor position at PM motors Possible values: - O: disabled (= factory settings) - 1: Identification during magnetizing period - 2: Identification during low speed operation - 3: Identification during magnetizing period and low speed operation	0
P7-17	\checkmark	PM-MotorSignallnLevel		Selection of voltage and duration of the signal to identify the rotor position at PM motors If this value is set too low, the rotor's position may not be detected, in which case excessively high values may result in the device being switched off due to overcurrent.	10

5 Parameter

5.9 Parameter group 8 ("Ramp")

5.9 Parameter group 8 ("Ramp")

Table 29: Parameter group 8 ("Ramp")

Para meter	RUN	Designation	Value	Description	DS
P8-01	\checkmark	t-acc2		Sets the acceleration ramp time 2 in seconds. The time interval set in "t-acc2" represents the time taken to accelerate from zero to "Motor Nom Frequency" (P1-09).	$\begin{aligned} & \text { FS2, FS3: } \\ & 5.0 \text { s } \\ & \text { FS4, } \ldots . . \\ & 10.0 \text { s } \end{aligned}$
P8-02	\checkmark	n-accMulti1		Frequency / speed, at which the acceleration ramp changes from tacc1 to t-acc2. This can be set to any value between 0 and " f -max" (P1-01) - "Motor Nom Speed" (P1-10) = 0, displayed in Hz. - "Motor Nom Speed" (P1-10) >0, displayed in rpm. - Frequency $/$ Speed $>$ P8-06 $=t-a c c 4$ - Frequency / Speed > P8-04 AND < P8-06 = t-acc3 - Frequency / Speed > P8-02 AND < P8-04 AND < P8-06 = t-acc2 - Frequency / Speed < P8-02 AND < P8-04 AND < P8-06 = t-acc1" Remark: The AND condition must be interpreted as a "logical AND operator," i.e., all conditions linked with AND must be met simultaneously.	0.0 Hz
P8-03	\checkmark	t-acc3		Sets the acceleration ramp time 3 in seconds. The time interval set in "t-acc3" represents the time taken to accelerate from zero to "Motor Nom Frequency" (P1-09).	$\begin{aligned} & \text { FS2, FS3: } \\ & 5.0 \mathrm{~s} \\ & \text { FS4, ...: } \\ & 10.0 \mathrm{~s} \end{aligned}$
P8-04	\checkmark	n-accMulti2		Frequency / speed, at which the acceleration ramp changes from t -acc2 to t -acc3. This can be set to any value between 0 and " f -max" (P1-01) - "Motor Nom Speed" (P1-10) = 0, displayed in Hz. - "Motor Nom Speed" (P1-10) >0, displayed in rpm. Description of the functionality see \rightarrow P8-02	0.0 Hz
P8-05	\checkmark	t-acc4		Sets the acceleration ramp time 4 in seconds. The time interval set in "t-acc4" represents the time taken to accelerate from zero to "Motor Nom Frequency" (P1-09).	$\begin{aligned} & \text { FS2, FS3: } \\ & 5.0 \mathrm{~s} \\ & \text { FS4, } \ldots . \\ & 10.0 \text { s } \end{aligned}$
P8-06	\checkmark	n-accMulti3		Frequency / speed, at which the acceleration ramp changes from t -acc3 to t -acc4. This can be set to any value between 0 and " f -max" (P1-01) - "Motor Nom Speed" (P1-10) = 0, di splayed in Hz. - "Motor Nom Speed" (P1-10) >0, displayed in rpm. Description of the functionality see \longrightarrow P8-02	0.0 Hz
P8-07	\checkmark	t-dec4		Sets the deceleration ramp time 4 in seconds. The time interval set in "t-dec4" represents the time taken to decelerate from "Motor Nom Frequency" (P1-09) to zero.	$\begin{aligned} & \text { FS2, FS3: } \\ & 5.0 \mathrm{~s} \\ & \text { FS4, } \ldots . . \\ & 10.0 \mathrm{~s} \end{aligned}$

Para meter	RUN	Designation	Value	Description	DS
P8-08	\checkmark	n-decMulti3		Frequency / speed, at which the deceleration ramp changes from t -dec 4 to t -dec3. This can be set to any value between 0 and "f-max" (P1-01) - "Motor Nom Speed" (P1-10) = 0, displayed in Hz. - "Motor Nom Speed" (P1-10) >0, displayed in rpm. - Frequency $/$ Speed $>$ P8-08 $=t$-dec4 - Frequency $/$ Speed $>$ P8-10 AND $<$ P8-08 $=\mathrm{t}$-dec3 - Frequency / Speed > P8-12 AND < P8-10 AND < P8-08 = t-dec2 - Frequency / Speed < P8-12 AND < P8-10 AND < P8-08 = t-dec1 Remark: The AND condition must be interpreted as a "logical AND operator," i.e., all conditions linked with AND must be met simultaneously.	0.0 Hz
P8-09	\checkmark	t-dec3		Sets the deceleration ramp time 3 in seconds. The time interval set in "t-dec3" represents the time taken to decelerate from "Motor Nom Frequency" (P1-09) to zero.	$\begin{aligned} & \text { FS2, FS3: } \\ & 5.0 \mathrm{~s} \\ & \text { FS4, ...: } \\ & 10.0 \mathrm{~s} \end{aligned}$
P8-10	\checkmark	n-decMulti2		Frequency / speed, at which the deceleration ramp changes from t -dec3 to t -dec2. This can be set to any value between 0 and "f-max" (P1-01) - "Motor Nom Speed" (P1-10) = 0, displayed in Hz . - "Motor Nom Speed" (P1-10) >0, displayed in rpm. Description of the functionality see $\rightarrow \mathrm{P} 8-02$	0.0 Hz
P8-11	\checkmark	t-dec2		Sets the deceleration ramp time 2 in seconds. The time interval set in "t-dec2" represents the time taken to decelerate from "Motor Nom Frequency" (P1-09) to zero.	$\begin{aligned} & \text { FS2, FS3: } \\ & 5.0 \mathrm{~s} \\ & \text { FS4, } \\ & 10.0 \mathrm{~s} \end{aligned}$
P8-12	\checkmark	n-decMulti1		Frequency / speed, at which the deceleration ramp changes from t -dec2 to t -dec1. This can be set to any value between 0 and "f-max" (P1-01) - "Motor Nom Speed" (P1-10) = 0, displayed in Hz. - "Motor Nom Speed" (P1-10) >0, displayed in rpm. Description of the functionality see $\rightarrow \mathrm{P} 8-08$	0.0 Hz
P8-13	\checkmark	Ramp Mode	0, 1	Source for ramp selection - O: Acceleration and Deceleration ramps 1 (t-acc1 (P1-03) und t -dec1 (P1-04)) are used. With a corresponding configuration in parameter group 9 a selection of individual ramps with P9: $24, \ldots, 27$ is possible. - 1: Acceleration and deceleration are carried out with the ramps set in P8-01 ... P8-12.	0
P8-14	-	Reserved Parameter		Reserved Parameter	-
P8-15	-	Reserved Parameter		Reserved Parameter	-

5 Parameter

5.10 Parameter group 9 ("Control")

5.10 Parameter group 9 ("Control")

Table 30: Parameter group 9 ("Control")

Para meter	RUN	Designation	Value	Description	DS
P9-01	-	Enable Operation Source	$0,1, \ldots, 8$	Source for Enable Signal This signal is usually assigned to Digital Input 1. It is e.g. used in applications, where the START signal comes via fieldbus or from a function block. This signal (logic $=1$) is necessary to operate the drive. At removal (logic = 0) the drive stops with the ramp selected by P9-26 / P9-27. Possible sources: - O: STO (Terminals 12 / 13) - 1: Digital Input 1 (DI1 = Terminal 2) - 2: Digital Input 2 (DI2 = Terminal 3) - 3: Digital Input 3 (DI3 = Terminal 4) - 4: Digital Input 4 (DI4 = Terminal 6) - 5: Digital Input 5 (D15 = Terminal 10) - 6: Digital Input 6 (DI6 = Terminal 1 on DXA-EXT-3DI1RO) - 7: Digital Input 7 (DI7 = Terminal 2 on DXA-EXT-3DI1RO) - 8: Digital Input 8 (DI8 = Terminal 3 on DXA-EXT-3DI1RO) Remark: To use the parameters in group 9 (P9-...), P1-13 has to be " 0 " (user defined)	0

Para meter	RUN	Designation	Value	Description	DS
P9-02	-	QuickStop Source	0, 1, .., 25	Source for Quick Stop This signal ($\operatorname{logic}=1$) is necessary to operate the drive. At removal (logic $=0$) the drive stops with the ramp selected by P2-25). Possible sources: - 0: OFF / Function not activated - 1: Digital Input 1 (DI1 = Terminal 2) - 2: Digital Input 2 (DI2 = Terminal 3) - 3: Digital Input 3 (DI3 $=$ Terminal 4) - 4: Digital Input 4 (DI4 $=$ Terminal 6) - 5: Digital Input 5 (D15 = Terminal 10) - 6: Digital input 6 (DI6 = terminal 1 on DXA-EXT-3DI1RO) - 7: Digital input 7 (DI7 = terminal 2 on DXA-EXT-3DI1RO) - 8: Digital input 8 (D18 = terminal 3 on DXA-EXT-3DI1RO) - 9: Analog Output 1 (AO1 = Terminal 8) - 10: Analog Output 2 (AO2 = Terminal 11) - 11: Digital Output 1 (RO1 = Terminal $14 / 15 / 16$) - 12: Digital Output 2 (RO2 = Terminal 17 / 18) - 13: Digital Output 3 (D03 $=$ Terminal $5 / 6$ on DXA-EXT-3DI1RO resp. Terminal 1 / 2 on DXA-EXT-3RO) - 14: Digital Output 4 (DO4 = Terminal 3 / 4 on DXA-EXT-3RO) - 15: Digital Output 5 (DO5 $=$ Terminal $5 / 6$ on DXA-EXT-3RO) - 16: ON / Function activated - 17: User register 1 - 18: User register 2 - 19: User register 3 - 20: User register 4 - 21: User register 5 - 22: User register 6 - 23: User register 7 - 24: User register 8 - 25: User register 9 Remark: To use the parameters in group 9 (P9-...), P1-13 has to be "0" (user defined)	0
P9-03	-	FWD Source		Source for the FWD command This signal (logic $=1)$ is necessary to operate the drive in the forward direction of rotation. At removal ($\operatorname{logic}=0$) the drive stops with the ramp selected by P9-26 / PG-27. When FWD and REV command are applied simultaneously, the drive executes a Quick Stop. Possible sources: \rightarrow P9-02 The source, selected here, can also be configured for a control with a latch signal. Description \rightarrow P9-05	1

5.10 Parameter group 9 ("Control")

Para meter	RUN	Designation	Value	Description	DS
P9-04	-	REV Source		Source for the REV command This signal (logic $=1)$ is necessary to operate the drive in the reverse direction of rotation. At removal (logic $=0$) the drive stops with the ramp selected by P9-26 / Pg-27. When FWD and REV command are applied simultaneously, the drive executes a Quick Stop. Possible sources: \rightarrow P9-02 The source, selected here, can also be configured for a control with a latch signal. Description \rightarrow P9-05	2
P9-05	-	Signal Format	0,1	Enables Latch function for FWD / REV inputs - 0: OFF. The commands for forward (FWD) and reverse (REV) have to be applied constantly. - 1: Latch control ON. The drive can be started, stopped and reversed by means of pulses. Function: - P9-01 (Enable): This signal has to be applied constantly during run. Removing the signal for a short time leads to a stop of the drive. For a restart a signal at the source, defined with P9-03 or P9-04, is necessary. - P9-03 (FWD): Start of the drive (direction: forward) via a pulse at the source defined here. To stop the removing of the enable signal is necessary. - P9-04 (REV): Start of the drive (direction: reverse) via a pulse at the source defined here. To stop the removing of the enable signal is necessary. - When FWD and REV commands are present simultaneously the drive will stop.	0
P9-06	-	Force REV Source		Source for "Force reverse operation" This signal (logic $=1$) forces the drive to run in the reverse direction. It is irrelevant, if the FWD or the REV command is applied. Without this signal (logic $=0)$ the sense of rotation is determined by FWD and REV commands. Possible sources: \rightarrow P9-02	0
P9-07	-	FaultReset Source		Source for Fault RESET A rising edge of this signal (from logic $=0$ to 1) resets existing fault messages. Possible sources: \rightarrow P9-02	1
P9-08	-	External Fault1 Source		Source for the "External Fault" signal - Logic $0=$ external fault - Logic $1=$ no external fault Possible sources: \rightarrow P9-02	0
P9-09	-	LocalRemote @Startup		Source for "Local / Remote" selection This parameter is only effective with $\mathrm{P} 1-12>0$. It enables the changeover between the command channel defined by P1-12 and the sources selected with P9-01, ..., P9-07. - Logic $0=$ Command channel according P1-12 - Logic $1=$ The drive is controlled by the sources defined with P9-01, ..., P9-07. Possible sources: \rightarrow P9-02	16

Para meter	RUN	Designation	Value	Description	DS
P9-10	-	SpeedSource1	0, 1, .., 16	Source for "Speed Reference 1" It is possible to define up to 8 sources for the speed reference, and to select them during operation using P9-18, $\ldots, \mathrm{Pg}-20$. When changing the speed reference source, the operation is effective immediately. A stop and restart is not required. Possible sources: - 0: Analog input 1 as speed reference - 1: Analog input 2 as speed reference - 2: Preset fixed frequency (selected with P9-21, ..., P9-23) - 3: Digital reference (keypad) - 4: PID controller output - 5: Master speed - 6: Speed reference via fieldbus - 7: Reference from function block - 8: Frequency reference (see P6-08) - 9: Preset fixed frequency f-fix1 (P2-01) - 10: Preset fixed frequency f-fix2 (P2-02) - 11: Preset fixed frequency f-fix3 (P2-03) - 12: Preset fixed frequency f-fix4 (P2-04) - 13: Preset fixed frequency f-fix5 (P2-05) - 14: Preset fixed frequency f-fix6 (P2-06) - 15: Preset fixed frequency f-fix7 (P2-07) - 16: Preset fixed frequency f-fix8 (P2-08) Remark: To use the parameters in group 9 (P9-...) P1-13 has to be 0 (user defined)	0
Pg-11	-	SpeedSource2	$0,1, \ldots, 16$	Source for "Speed Reference 2" It is possible to define up to 8 sources for the speed reference, and to select them during operation using P9-18, $\ldots, \mathrm{Pg}-20$. When changing the speed reference source, the operation is effective immediately. A stop and restart is not required. Possible sources: \rightarrow Pg-10	2
P9-12	-	SpeedSource3	$0,1, \ldots, 16$	Source for "Speed Reference 3" It is possible to define up to 8 sources for the speed reference, and to select them during operation using P9-18, $\ldots, \mathrm{Pg}-20$. When changing the speed reference source, the operation is effective immediately. A stop and restart is not required. Possible sources: \rightarrow P9-10	0
P9-13	-	SpeedSource4	0, 1, . , 16	Source for "Speed Reference 4" It is possible to define up to 8 sources for the speed reference, and to select them during operation using P9-18, $\ldots, \mathrm{Pg}-20$. When changing the speed reference source, the operation is effective immediately. A stop and restart is not required. Possible sources: \rightarrow P9-10	0
P9-14	-	SpeedSource5	$0,1, \ldots, 16$	Source for "Speed Reference 5" It is possible to define up to 8 sources for the speed reference, and to select them during operation using P9-18, \ldots, P9-20. When changing the speed reference source, the operation is effective immediately. A stop and restart is not required. Possible sources: \rightarrow P9-10	0

5.10 Parameter group 9 ("Control")

Para meter	RUN	Designation	Value	Description				DS
P9-15	-	SpeedSource6	0, 1, .., 16	Source for "Speed Reference 6" It is possible to define up to 8 sources for the speed reference, and to select them during operation using P9-18, $\ldots, \mathrm{Pg}-20$. When changing the speed reference source, the operation is effective immediately. A stop and restart is not required. Possible sources: \rightarrow Pg-10				0
P9-16	-	SpeedSource7	0, 1, .., 16	Source for "Speed Reference 7" It is possible to define up to 8 sources for the speed reference, and to select them during operation using P9-18, $\ldots, \mathrm{Pg}-20$. When changing the speed reference source, the operation is effective immediately. A stop and restart is not required. Possible sources: \rightarrow P9-10				0
P9-17	-	SpeedSource8	0, 1, .., 16	Source for "Speed Reference 8" It is possible to define up to 8 sources for the speed reference, and to select them during operation using P9-18, $\ldots, \mathrm{Pg}-20$. When changing the speed reference source, the operation is effective immediately. A stop and restart is not required. Possible sources: \rightarrow Pg-10				0
P9-18	-	Speed Select B0	0, 1, .., 25	Speed Reference Select Bit 0 Parameters P9-18 ... P9-20 determine the selection of the actual speed reference value, defined by P9-10, ..., P9-17. Selection:				3
				Speed Reference	P9-18	P9-19	P9-20	
				Speed reference value 1 (Pg-10)	0	0	0	
				Speed reference value 2 (P9-11)	1	0	0	
				Speed reference value 3 (P9-12)	0	1	0	
				Speed reference value 4 (P9-13)	1	1	0	
				Speed reference value 5 (P9-14)	0	0	1	
				Speed reference value 6 (P9-15)	1	0	1	
				Speed reference value 7 (Pg-16)	0	1	1	
				Speed reference value 8 (P9-17)	1	1	1	
				Possible sources: \rightarrow P9-02				
P9-19	-	Speed Select B1	0,1, .., 25	Speed Reference Select Bit 1 Parameters P9-18, ..., P9-20 determine the selection of the actual speed reference value, defined by P9-10, ..., P9-17. Selection \rightarrow P9-18 Possible sources: \rightarrow P9-02				0

5.10 Parameter group 9 ("Control")

Para meter	RUN	Designation	Value	Description	DS
P9-28	-	digRef UP Source	$0,1, \ldots, 25$	Source for "Increase Digital Reference" Defines the souce of a signal for the increasement of the digital reference (Motorpot) - Logic $0=$ no increasement of the digital reference - Logic $1=$ The digital reference will be increased. Acceleration according t-acc (P1-03) Possible sources: \rightarrow P9-02	0
P9-29	-	digRef DOWN Source	$0,1, \ldots, 25$	Source for "Decrease Digital Reference" Defines the souce of a signal for an decreasement of the digital reference (Motorpot) - Logic $0=$ no decreasement of the digital reference - Logic 1 = The digital reference will be decreased. Deceleration according t-dec (P1-04) Possible sources: \rightarrow P9-02	0
P9-30	-	EnableDirFWD Source		Enable Direction FWD Defines a source for a signal to enable the "forward" (FWD) sense of rotation. - Logic $0=$ An operation in forward direction is not possible. If the motor already turns in forward direction when the signal changes from logic 1 to 0 , it ramps to stand still by using the quick stop ramp (P2-25) - Logic $1=$ An operation in forward direction is possible. Possible sources: \rightarrow P9-02	0
P9-31	-	EnableDirREV Source		Enable Direction REV Defines a source for a signal to enable the "reverse" (REV) sense of rotation. - Logic $0=$ An operation in reverse direction is not possible. If the motor already turns in reverse direction when the signal changes from logic 1 to 0 , it ramps to stand still by using the quick stop ramp (P2-25). - Logic $1=$ An operation in reverse direction is possible. Possible sources: \rightarrow P9-02	0
P9-32	-	Reserved Parameter		Reserved Parameter	0
P9-33	-	AD01 Function \& Mode Extension	0, 1, 2	Selection of additional functions for AD01 - 0: Function of the Analog Output 1 is determined by P2-11 - 1: User defined digital output ($0 \mathrm{~V} / 24 \mathrm{~V}$) from function block - 2: User defined analog output from function block	0
P9-34	-	ADO2 Function \& Mode Extension	0, 1, 2	Selection of additional functions for ADO2 - 0: Function of the Analog Output 2 is determined by P2-13 - 1: User defined digital output ($0 \mathrm{~V} / 24 \mathrm{~V}$) from function block - 2: User defined analog output from function block	0
P9-35	-	R01 Function Extension	0,1	Selection of additional functions for RO1 - 0: Function of Relay Output 1 is determined by P2-15 - 1: User defined output from function block	0
P9-36	-	RO2 Function Extension	0,1	Selection of additional functions for RO2 - O: Function of Relay Output 2 is determined by P2-18 - 1: User defined output from function block	0
P9-37	-	Display Scale Source	0,1	Source to Scale factor display - $\mathbf{0}$: The source of the scaling factor is determined by P2-21. - 1: User defined source from function block	0

5 Parameter

5.10 Parameter group 9 ("Control")

Para meter	RUN	Designation	Value	Description	DS
P9-38	-	PID1 Set Point1 Source Ext	0,1	Selection of additional sources for PID1 reference - $\mathbf{0}$: The source of the reference is determined by P3-05. - 1: User defined source from function block	0
P9-39	-	PID1 Feedback1 Source Ext	0,1	Selection of additional sources for PID1 feedback - 0: The source of the feedback is determined by P3-10. - 1: User defined source from function block	0
P9-40	-	M-Ref Source Extension	0,1	Extended Selection values for Source of torque reference - $\mathbf{0}$: The source of the reference is determined by P4-06. - 1: User defined source from function block	0
P9-41	-	R05 Function Extension	0,1	Selection of additional functions for RO5 The relays are located on option boards. - 0: Factory settings active (Relay 3: Drive healthy (DXA-EXT-3RO + DXA-EXT-3DI1RO) Relay 4: Drive tripped (DXA-EXT-3RO) Relay 5 : Drive running (DXA-EXT-3RO)) - 1: User defined output from function block	0

Alphabetical index

AAbbreviationsXX
AC motors XX
AC supply systems XX
accessories XX
After Sales Service XX
All-pole sine filter XX
Analog input XX
Analog Output XXBBaffleXX
Base-mounted filter XX
Blanking plate XX
Block diagrams XX
Braking resistances XX
Break-Down Service XX
Brushless DC motors XX
Bus termination resistor XX
Bypass XX
C
Cable brackets XX
Cable cross-sections XX
Cable glands XX
cable routing XX
CANopen XX
Catalog number selection XX
Example XX
Checklist XX
Circuit type XX
commissioning XX
Connection XX
Connection terminals XX
Control panel installation XX
Control section XX
Control signal terminals XX
Cooling measures XX
D
DC link coupling XX
DC Link Voltage XX
Delta circuit XX
Delta network XX
Derating XX
derating XX
Description XX
Digital input XX
Digital output XX
Dimensions XX
Disconnecting device XX
Double modulation method XX
drivesConnect XX
DX-KEY-LED XX
DX-KEY-OLED XX
E
E
Earth-fault protection XX
Earthing XX
Efficiency classes XX
Electrical Installation XX
EMC XX
emc XX
EMC mounting adapter XX
Enclosure versions XX
Engineering XX
Equipment supplied XX
ESD measures XX
External control voltage XX
F
Fault messages XX
Features XX
fixing XX
Fuses XX
G
General installation diagram XX
gland plates XX
Ground contact currents XX
H
Hazard warnings of material damages XX
of personal injury XX
Operational XX
Heat dissipation XX
Heat Losses XX
I
Inching operation XX
Inspection XX
Installation XX
Instructional leaflets XX
Insulation tests XX
Internal DC link capacitors XX
Internet addresses XX
L
Leakage currents XX
LED status indication XX
Liquid fuses XX
Radio interference suppression filter XX
List of revisions XX
Load groups XX
M
Magnet system XX
Example XX
Main terminal XX
Mains chokes XX
Mains contactors XX
Mains supply voltages XX
Mains voltage XX
Maintenance XX
Minimum clearances XX
Modbus RTU XX
Motor cable XX
motor choke XX
Motor earthing XX
Motor Selection XX
Motor terminal box XX
Mounting XX
Mounting dimensions XX
Mounting position XX
Mounting rail
N
NameplateExampleXX
Network configuration XX
0
Openings XX
Operating unit XX
Setting parameters XX
Shielded motor cable XX
Side-mounting filter XX

P

P.f. correction equipment XX
Paralleling link XX
Parameter manual XX
PDS (Power Drives System) XX
Permanent magnet motors XX
Power part XX
Protection against electric shock XX
Protective devices XX
Protective earth XX
R
Rated motor current XX
Rated operational data XX
Rated output current XX
Rating plate XX
Reference voltage XX
relay XX
Residual Current Circuit Breakers XX
Residual Current Device XX
RJ45 XX
RS485 XX
S
Safe stop XX
Safe Torque Off XX
Screen braid XX
Screen earth kit XX
Screened cable XX
Screws XX
Selection Criteria XX
Series xX
Signal cables XX
Sine filter XX
Sizes XX
Standards XX
Star connection XX
STO function XX
STO terminals XX
STO-compatible installation XX
Storage XX
Storing Temperature XX
Stripping lengths XX
Supply data XX
Switching Frequency XX
Synchronous reluctance motors XX
System overview XX
T
Technical data XX
terminal bolt XX
Terminal capacity XX
THD (Total Harmonic Distortion) XX
Three-phase motor XX
Tightening torques XX
U
Unit of measurement XX
Use, intended XX
V
VAR XX
Voltage balance XX
Voltage categories XX
W
Warranty XX

[^0]: 1) As per IEC standards
 2) Quote from "Power Conversion Equipment - UL 508C, May 3, 2002".
[^1]: 1) Quote from "Power Conversion Equipment - UL 508C, May 3, 2002".
[^2]: \longrightarrow
 Please note that the mounting makes it possible to open and close the control signal terminal covers without any problems.

[^3]: \rightarrow
 Complete the following steps with the specified tools and without using force.

[^4]: 1) $A W G=$ American wire gauge
 kcmil = Thousands of circular mils ($1 \mathrm{kcmil}=0.5067 \mathrm{~mm}^{2}$)
 2) Maximum motor cable length $=100 \mathrm{~m}(330 \mathrm{ft})$
[^5]: $2 / /$ DX-BR $\ldots=$ Two units of this model connected in paralle| $\mid 2 \& D X-B R \ldots=$ Two units of this model connected in series Resistances: $R_{B \text { min }}=$ Minimum permissible resistance; $R_{B r e c}=$ Recommended resistance

[^6]: 2 \& DX-BR... Two units of this model connected in series

[^7]: 1) Maximum permissible ambient temperature: $+45^{\circ} \mathrm{C}$;

 Permissible motor voltage range: $380-480 \mathrm{~V} \pm 10 \%$

